

EurotestXA MI 3105 Benutzerhandbuch Version 5.2, Code-Nr. 20 751 841

Händler:

Hersteller:

METREL d.d. Ljubljanska cesta 77 1354 Horjul Slowenien

Webseite: <u>http://www.metrel.si</u> e-mail: <u>metrel@metrel.si</u>

Dieses Zeichen garantiert, dass das Gerät gemäß den Anforderungen der EU (European Union) bezüglich Vorschriften über Sicherheit und elektromagnetische Verträglichkeit hergestellt wurde.

© 2006...2010, 2011 METREL

HW 5.0

Kein Teil dieser Veröffentlichung darf in irgendeiner Form oder durch irgendein Mittel ohne schriftliche Erlaubnis von METREL reproduziert oder verwertet werden.

2 Sicherheits- und Bedienungshinweise 7 2.1 Achtungen und Warnhinweise 7 2.2 Batterien und Laden. 11 2.2.1 Neue oder über eine längeren Zeitraum nicht benutzte Batterien 12 2.3 Anwendbare Standards. 13 3 Beschreibung des Instruments 14 3.1 Front-Bedienfeld 14 3.2 Anschlussfeld 16 3.4 Bodenansicht 17 3.5 Rückwand 16 3.4 Bodenansicht 17 3.5.1 Klemmenspannungswächter 18 3.5.2 Menüzeile 19 3.5.3 Meldungsfeld 20 3.5.4 Ergebnisfeld 20 3.5.6 Warntöne 20 3.5.7 Hilfe 20 3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.6 Tragen des Instruments 22 3.7.1 Standardausstattung 23 3.7.2 Optionale	1	Vorwo	rt	6
2.1 Achtungen und Warnhinweise 7 2.2 Batterien und Laden	2	Sicher	heits- und Bedienungshinweise	7
2.2 Batterien und Laden. 11 2.2.1 Neue oder über eine längeren Zeitraum nicht benutzte Batterien 12 2.3 Anwendbare Standards 13 3 Beschreibung des Instruments 14 3.1 Front-Bedienfeld 14 3.2 Anschlussfeld 14 3.3 Rückwand 16 3.4 Bodenansicht 17 3.5 Display- Aufbau 18 3.5.1 Klemmenspannungswächter. 18 3.5.2 Menüzelle. 19 3.5.3 Meldungsfeld. 19 3.5.4 Ergebnisfeld 20 3.5.5 Andere Meldungen 20 3.5.6 Wamtöne 20 3.5.7 Hilfe 20 3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.7.1 Standardausstattung 23 3.7.2 Optionales Zubehör 23 3.7.1 Standardausstattung 24 4.1 Hauptmenü 27 4.3.2 Einstellung der Automatiksequenz 29		2.1	Achtungen und Warnhinweise	7
2.2.1 Neue oder über eine längeren Zeitraum nicht benutzte Batterien 12 2.3 Anwendbare Standards 13 3 Beschreibung des Instruments 14 3.1 Front-Bedienfeld 14 3.2 Anschlussfeld 15 3.3 Rückwand 16 3.4 Bodenansicht 16 3.5 Display-Aufbau 18 3.5.1 Klemmenspannungswächter 18 3.5.2 Menüzelle 19 3.5.3 Meldungsfeld 20 3.5.4 Ergebnisfeld 20 3.5.5 Andere Meldungen 20 3.5.6 Warntöne 20 3.5.7 Hilfe 20 3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.6 Tragen des Instruments 22 3.7.1 Standardausstattung 23 3.7.2 Optionales Zubehör des Instruments 23 3.7.2 Optionales Zubehör 24 4.1 Hauptmenü 24 4.2 Einzelprüfung 26		2.2	Batterien und Laden	11
2.3 Anwendbare Standards 13 3 Beschreibung des Instruments 14 3.1 Front-Bedienfeld 14 3.2 Anschlussfeld 15 3.3 Rückwand 16 3.4 Bodenansicht 17 3.5 Display-Aufbau 18 3.5.1 Klemmespannungswächter 18 3.5.2 Menüzeile 19 3.5.3 Meldungsfeld 20 3.5.4 Ergebnisfeld 20 3.5.5 Andere Meldungen 20 3.5.6 Warntöne 20 3.5.7 Haite enstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.6 Fragen des Instruments 22 3.7.1 Standardausstattung 23 3.7.2 Optionales Zubehör 23 4 Bedienung des Instruments 24 4.1 Hautomatiksequenz 28 4.3 Automatikkprüfung 24 4.3 Automatikkequenz 29 4.3.4 Name und Beschreibung der Automatiksequenz 29 <tr< td=""><td></td><td>2.2.1</td><td>Neue oder über eine längeren Zeitraum nicht benutzte Batterien</td><td>12</td></tr<>		2.2.1	Neue oder über eine längeren Zeitraum nicht benutzte Batterien	12
3 Beschreibung des Instruments 14 3.1 Front-Bedienfeld 14 3.1 Front-Bedienfeld 14 3.2 Anschlussfeld 15 3.3 Rückwand 16 3.4 Bodenansicht 17 3.5 Display- Aufbau 17 3.5 Meldungsfeld 19 3.5.1 Klemmenspannungswächter 18 3.5.2 Mentizeile 19 3.5.3 Meldungsfeld 20 3.5.4 Ergebnisfeld 20 3.5.5 Andere Meldungen 20 3.5.6 Warntöne 20 3.5.7 Hilfe 20 3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.6 Tragen des Instruments 22 3.7.1 Standardausstattung 23 3.7.2 Optionales Zubehör des Instruments 24 4.1 Hauptmenü 24 4.2 Einstellung der Automatiksequenz 28 4.3.1 Automatiksruftyrüfung 26 4.3.1		2.3	Anwendbare Standards	13
3.1 Front-Bedienfeld 14 3.2 Anschlussfeld 15 3.3 Rückwand 16 3.4 Bodenansicht 17 3.5 Display-Aufbau 18 3.5.1 Klemmenspannungswächter 18 3.5.2 Mentizeile 19 3.5.3 Meldungsfeld 20 3.5.4 Ergebnisfeld 20 3.5.5 Andere Meldungen 20 3.5.6 Warttöne 20 3.5.7 Hilfe 20 3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.6 Tragen des Instruments 23 3.7.1 Standardausstattung 23 3.7.2 Optionales Zubehör 23 3.7.1 Standardausstattung 24 4.1 Hauptmenü 24 4.2 Einstellung der Automatiksequenz 29 4.3 Automatiksequenznummer-Hauptmenü 27 4.3 Prüfparameter und Automatiksequenz 29 4.3.4 Name und Beschreibung der Automatiksequenz 29	3	Besch	reibung des Instruments	14
3.2 Anschlussfeld. 15 3.3 Rückwand 16 3.4 Bodenansicht 17 3.5 Display- Aufbau 18 3.5.1 Klemmenspannungswächter 18 3.5.2 Menüzeile 19 3.5.3 Meldungsfeld 19 3.5.4 Ergebnisfeld 20 3.5.5 Andere Meldungen 20 3.5.6 Warntöne 20 3.5.7 Hilfe 20 3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.6 Tragen des Instruments 22 3.7.4 Naustattung und Zubehör des Instruments 23 3.7.1 Standardausstattung 23 3.7.2 Optionales Zubehör 24 4.1 Hauptmenü 24 4.2 Einstellung der Automatiksequenz 29 4.3.1 Automatiksequerznummer-Hauptmenü 27 4.3.2 Einstellung der Automatiksequenz 29 4.3.3 Prüfparameter und Automatiksequenz 29 4.3.4 Name und Beschreibung der A		3.1	Front-Bedienfeld	14
3.3 Rückwand 16 3.4 Bodenansicht 17 3.5 Display- Aufbau 18 3.5.1 Klemmenspannungswächter 18 3.5.2 Mentzeile 19 3.5.3 Meldungsfeld 20 3.5.4 Ergebnisfeld 20 3.5.5 Andere Meldungen 20 3.5.6 Warntöne 20 3.5.7 Hilfe 20 3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.6 Tragen des Instruments 22 3.7 Ausstattung und Zubehör des Instruments 23 3.7.1 Standardausstattung 23 3.7.2 Optionales Zubehör 23 4 Bedienung des Instruments 24 4.1 Hauptmenü 24 4.2 Einstellung der Automatiksequenz 28 4.3 Automatikprüfung 26 4.3.4 Automatiksequenz 29 4.3.5 Speicherung der Automatiksequenz 29 4.3.6 Pausezeichens und Anmerkungen bei Automatiksequenz		3.2	Anschlussfeld	15
3.4 Bodenansicht 17 3.5 Display-Aufbau 18 3.5.1 Klemmenspannungswächter 18 3.5.2 Menüzeile 19 3.5.3 Meldungsfeld 19 3.5.4 Ergebnisfeld 20 3.5.5 Andere Meldungen 20 3.5.6 Wantöne 20 3.5.7 Hilfe 20 3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.6 Tragen des Instruments 23 3.7 Ausstattung und Zubehör des Instruments 23 3.7.2 Optionales Zubehör 23 3.7.2 Optionales Zubehör 23 3.7.4 Hauptmenü 24 4.1 Hauptmenü 24 4.2 Einstellung der Automatiksequenz 28 4.3.1 Automatiksprüfung 26 4.3.1 Automatiksequenz 29 4.3.4 Name und Beschreibung der Automatiksequenz 29 4.3.5 Speicherung der Automatiksequenz 29 4.3.6 Pausezeichen und Anmerkungen bei		3.3	Rückwand	16
3.5 Display-Aufbau 18 3.5.1 Klemmenspannungswächter 18 3.5.2 Menüzeile 19 3.5.3 Meldungsfeld 20 3.5.4 Ergebnisfeld 20 3.5.5 Andere Meldungen 20 3.5.6 Warntöne 20 3.5.7 Hilfe 20 3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.6 Tragen des Instruments 22 3.7 Ausstattung und Zubehör des Instruments 23 3.7.2 Optionales Zubehör 23 3.7.2 Optionales Zubehör 23 4 Bedienung des Instruments 24 4.1 Hauptmenü 24 4.2 Einzelprüfung 24 4.3 Automatiksequenzummer-Hauptmenü 27 4.3.2 Einstellung der Automatiksequenz 29 4.3.3 Prüfparameter und Automatiksequenz 29 4.3.4 Name und Beschreibung der Automatiksequenz 29 4.3.5 Speicherung der Automatiksequenz 29 4.3.6 </td <td></td> <td>3.4</td> <td>Bodenansicht</td> <td>17</td>		3.4	Bodenansicht	17
3.5.1 Klemmenspannungswachter 18 3.5.2 Menüzeile 19 3.5.3 Meldungsfeld 19 3.5.4 Ergebnisfeld 20 3.5.5 Andere Meldungen 20 3.5.6 Warntöne 20 3.5.7 Hilfe 20 3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.6 Tragen des Instruments 22 3.7.1 Standardausstattung 23 3.7.2 Optionales Zubehör 23 3.7.2 Optionales Zubehör 24 4.1 Hauptmenü 24 4.2 Einzelprüfung 24 4.3 Automatiksequenz.mummer-Hauptmenü 27 4.3.1 Automatiksequenz. 28 4.3.3 Prüfparameter und Automatiksequenz. 29 4.3.4 Name und Beschreibung der Automatiksequenz. 29 4.3.5 Speicherung der Automatiksequenz. 29 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz. 39 4.4.4 Sonstiges 39 39		3.5	Display- Aufbau	18
3.5.2 Meldungsfeld 19 3.5.4 Ergebnisfeld 20 3.5.5 Andere Meldungen 20 3.5.6 Warntöne 20 3.5.7 Hilfe 20 3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.6 Tragen des Instruments 22 3.7 Ausstattung und Zubehör des Instruments 23 3.7.1 Standardausstattung 23 3.7.2 Optionales Zubehör 23 3.7.2 Optionales Zubehör 23 3.7.4 Hauptmenü 24 4.1 Hauptmenü 24 4.2 Einzelprüfung 24 4.3 Automatiksequenznummer-Hauptmenü 27 4.3.2 Einstellung der Automatiksequenz 29 4.3.4 Name und Beschreibung der Automatiksequenz 29 4.3.5 Speicherung der Automatiksequenz 29 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz 31 4.3.7 Einstellung des Pausezeichens und Anmerkungen 32 4.3.8 Vorbereitung einer Automatiksequenz<		3.5.1	Klemmenspannungswachter	18
3.5.3 Medufigsteld 19 3.5.4 Ergebnisfeld 20 3.5.5 Andere Meldungen 20 3.5.6 Warntöne 20 3.5.7 Hilfe 20 3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.6 Tragen des Instruments 22 3.7 Ausstattung und Zubehör des Instruments 23 3.7.1 Standardausstattung. 23 3.7.2 Optionales Zubehör. 24 4.1 Hauptmenü 24 4.2 Einzelprüfung. 24 4.3 Automatikprüfung. 26 4.3.1 Automatiksequenz.nummer-Hauptmenü. 27 4.3.2 Einstellung der Automatiksequenz. 29 4.3.3 Prüfparameter und Automatiksequenz. 29 4.3.4 Name und Beschreibung der Automatiksequenz. 29 4.3.5 Speicherung der Automatiksequenz. 29 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz. 39 4.4.4 Sonstiges 39 4.4.5 Vorbereitung einer Automatiksequenz. </td <td></td> <td>3.5.2</td> <td>Menuzelle</td> <td>19</td>		3.5.2	Menuzelle	19
3.5.4 Eigebritsteu 20 3.5.5 Andere Meldungen 20 3.5.6 Warntöne 20 3.5.7 Hilfe 20 3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.6 Tragen des Instruments 22 3.7 Ausstattung und Zubehör des Instruments 23 3.7.1 Standardausstattung 23 3.7.2 Optionales Zubehör 23 3.7 Ausstattung und Zubehör des Instruments 24 4.1 Hauptmenü 24 4.2 Einzelprüfung 26 4.3.1 Automatiksrequenzummer-Hauptmenü 27 4.3.2 Einstellung der Automatiksequenz 29 4.3.3 Prüfparameter und Automatiksequenz 29 4.3.4 Name und Beschreibung der Automatiksequenz 29 4.3.5 Speicherung der Automatiksequenz 29 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz 31 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz 34 4.3.8 Vorbereitung einer Automatiksequenz 34		3.3.3 2.5.4	Franknisfold	19
3.5.6 Warntöne 20 3.5.7 Hilfe 20 3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.6 Tragen des Instruments 22 3.7 Ausstattung und Zubehör des Instruments 23 3.7.1 Standardausstattung 23 3.7.2 Optionales Zubehör 23 4 Bedienung des Instruments 24 4.1 Hauptmenü 24 4.2 Einzelprüfung 24 4.3 Automatiksequenznummer-Hauptmenü 26 4.3.1 Automatiksequenz 29 4.3.2 Einstellung der Automatiksequenz 29 4.3.3 Prüfparameter und Automatiksequenz 29 4.3.4 Name und Beschreibung der Automatiksequenz 29 4.3.5 Speicherung der Automatiksequenz 29 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz 31 4.3.7 Einstellung der Automatiksequenz 31 4.3.8 Vorbereitung einer Automatiksequenz 34 4.4 Sonstiges 39 4.4.1 Spr		3.5.4	Andere Meldungen	20
3.5.7 Hilfe 20 3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.6 Tragen des Instruments 22 3.7 Ausstattung und Zubehör des Instruments 23 3.7.1 Standardausstattung 23 3.7.2 Optionales Zubehör 23 4 Bedienung des Instruments 24 4.1 Hauptmenü 24 4.2 Einzelprüfung 26 4.3.1 Automatiksequenznummer-Hauptmenü 27 4.3.2 Einstellung der Automatiksequenz 28 4.3.3 Prüfparameter und Automatiksequenz 29 4.3.4 Name und Beschreibung der Automatiksequenz 29 4.3.5 Speicherung der Automatiksequenz 29 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz 31 4.3.7 Einstellung des Pausezeichens und Anmerkungen 32 4.3.8 Vorbereitung einer Automatiksequenz 34 4.4 Sonstiges 39 4.4.1 Sprachauswahl 39 4.4.2 Versorgungsnetz-System, Isc-Faktor, RCD-Standard 40		356	Warntöne	20
3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts 21 3.6 Tragen des Instruments 22 3.7 Ausstattung und Zubehör des Instruments 23 3.7.1 Standardausstattung 23 3.7.2 Optionales Zubehör. 23 3.7 Einstellung des Instruments 24 4.1 Hauptmenü 24 4.2 Einstellung der Automatiksequenz 29 4.3.3 Prüfparameter und Automatiksequenz 29 4.3.5 Speicherung der Automatiksequenz 29 4.3.6 Pausezeichen und Anmerkungen bei Automatikseq		357	Hilfe	20
3.6 Tragen des Instruments 22 3.7 Ausstattung und Zubehör des Instruments 23 3.7.1 Standardausstattung 23 3.7.2 Optionales Zubehör 23 4 Bedienung des Instruments 24 4.1 Hauptmenü 24 4.2 Einzelprüfung 24 4.3 Automatikprüfung 26 4.3.1 Automatiksequenznummer-Hauptmenü 27 4.3.2 Einstellung der Automatiksequenz 28 4.3.3 Prüfparameter und Automatiksequenz 29 4.3.4 Name und Beschreibung der Automatiksequenz 29 4.3.5 Speicherung der Automatiksequenz 29 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz 31 4.3.7 Einstellung des Pausezeichens und Anmerkungen 32 4.3.8 Vorbereitung einer Automatiksequenz 34 4.4 Sonstiges 39 4.4.1 Sprachauswahl 39 4.4.2 Versorgungsnetz-System, Isc-Faktor, RCD-Standard 40 4.4.3 Abrufen und löschen von Messergebnisse 42		3.5.8	Einstellung der Hintergrundbeleuchtung und des Kontrasts	21
3.7 Ausstattung und Zubehör des Instruments 23 3.7.1 Standardausstattung 23 3.7.2 Optionales Zubehör 23 3.7.4 Bedienung des Instruments 24 4.1 Hauptmenü 24 4.2 Einzelprüfung 24 4.3 Automatiksequenznummer-Hauptmenü 26 4.3.1 Automatiksequenznummer-Hauptmenü 27 4.3.2 Einstellung der Automatiksequenz 29 4.3.3 Prüfparameter und Automatiksequenz 29 4.3.4 Name und Beschreibung der Automatiksequenz 29 4.3.5 Speicherung der Automatiksequenz 29 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz 31 4.3.7 Einstellung des Pausezeichens und Anmerkungen 32 4.3.8 Vorbereitung einer Automatiksequenz 34 4.4 Sonstiges 39 4.4.1 Sprach		3.6	Tragen des Instruments	22
3.7.1 Standarďausstattung 23 3.7.2 Optionales Zubehör 23 4 Bedienung des Instruments 24 4.1 Hauptmenü 24 4.2 Einzelprüfung 26 4.3 Automatikprüfung 26 4.3.1 Automatiksequenznummer-Hauptmenü 27 4.3.2 Einstellung der Automatiksequenz 28 4.3.3 Prüfparameter und Automatiksequenz 29 4.3.4 Name und Beschreibung der Automatiksequenz 29 4.3.5 Speicherung der Automatiksequenzeinstellungen (Sequenz, Nummer, Name) 31 4.3.6 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz 31 4.3.7 Einstellung des Pausezeichens und Anmerkungen 32 4.3.8 Vorbereitung einer Automatiksequenz 34 4.4 Sonstiges 39 4.4.1 Sprachauswahl 39 4.4.2 Versorgungsnetz-System, Isc-Faktor, RCD-Standard 40 4.4.3 Abrufen und löschen von Messergebnisse 42 4.4.4 Datum und Zeit 42 4.4.5 Wiederherstellung der ursprünglich		3.7	Ausstattung und Zubehör des Instruments	23
3.7.2 Optionales Zubehör. 23 4 Bedienung des Instruments 24 4.1 Hauptmenü 24 4.2 Einzelprüfung 24 4.3 Automatikprüfung. 26 4.3.1 Automatiksequenznummer-Hauptmenü. 27 4.3.2 Einstellung der Automatiksequenz. 28 4.3.3 Prüfparameter und Automatiksequenz. 29 4.3.4 Name und Beschreibung der Automatiksequenz. 29 4.3.5 Speicherung der Automatiksequenz 29 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz. 31 4.3.7 Einstellung des Pausezeichens und Anmerkungen 32 4.3.8 Vorbereitung einer Automatiksequenz 34 4.4 Sonstiges 39 4.4.1 Sprachauswahl. 39 4.4.2 Versorgungsnetz-System, Isc-Faktor, RCD-Standard 40 4.4.3 Abrufen und löschen von Messergebnisse 42 4.4.4 Datum und Zeit. 42 4.4.5 Wiederherstellung der ursprünglichen Einstellungen 43 4.4.6 Auswahl der Schnittstelle		3.7.1	Standardausstattung	23
4 Bedienung des Instruments 24 4.1 Hauptmenü 24 4.2 Einzelprüfung 26 4.3.1 Automatikprüfung 26 4.3.2 Einstellung der Automatiksequenz 28 4.3.3 Prüfparameter und Automatiksequenz 29 4.3.4 Name und Beschreibung der Automatiksequenz 29 4.3.5 Speicherung der Automatiksequenz 29 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz 31 4.3.7 Einstellung des Pausezeichens und Anmerkungen 32 4.3.8 Vorbereitung einer Automatiksequenz 34 4.4 Sonstiges 39 4.4.1 Sprachauswahl 39 4.4.2 Versorgungsnetz-System, Isc-Faktor, RCD-Standard 40 4.4.3 Abrufen und löschen von Messergebnisse 42 4.4.4 Datum und Zeit 42 4.4.5 Wiederherstellung der ursprünglichen Einstellungen 43 4.4.6 Auswahl der Schnittstelle 45 4.4.7 LOCATOR - Leitungssucherfunktion 46 4.4.8 Bediener 46		3.7.2	Optionales Zubehör	23
4.1 Hauptmenü 24 4.2 Einzelprüfung 24 4.3 Automatikprüfung 26 4.3.1 Automatiksequenznummer-Hauptmenü 27 4.3.2 Einstellung der Automatiksequenz 28 4.3.3 Prüfparameter und Automatiksequenz 29 4.3.4 Name und Beschreibung der Automatiksequenz 29 4.3.5 Speicherung der Automatiksequenzeinstellungen (Sequenz, Nummer, Name) 31 4.3.6 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz 31 4.3.7 Einstellung des Pausezeichens und Anmerkungen 32 4.3.8 Vorbereitung einer Automatiksequenz 34 4.4 Sonstiges 34 4.4 Sonstiges 34 4.4 Sonstiges 42 4.4.1 Sprachauswahl 39 4.4.2 Versorgungsnetz-System, Isc-Faktor, RCD-Standard 40 4.4.3 Abrufen und löschen von Messergebnisse 42 4.4.4 Datum und Zeit 42 4.4.5 Wiederherstellung der ursprünglichen Einstellungen 43 4.4.6 Auswahl der Schnittstelle <th>1</th> <th>Bodior</th> <th>nung des Instruments</th> <th>21</th>	1	Bodior	nung des Instruments	21
4.2 Einzelprüfung 24 4.3 Automatikprüfung 26 4.3.1 Automatiksequenznummer-Hauptmenü 27 4.3.2 Einstellung der Automatiksequenz 28 4.3.3 Prüfparameter und Automatiksequenz 29 4.3.4 Name und Beschreibung der Automatiksequenz 29 4.3.5 Speicherung der Automatiksequenzeinstellungen (Sequenz, Nummer, Name) 31 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz 31 4.3.7 Einstellung des Pausezeichens und Anmerkungen 32 4.3.8 Vorbereitung einer Automatiksequenz 34 4.4 Sonstiges 39 4.4.1 Sprachauswahl 39 4.4.2 Versorgungsnetz-System, Isc-Faktor, RCD-Standard 40 4.4.3 Abrufen und löschen von Messergebnisse 42 4.4.4 Datum und Zeit 42 4.4.5 Wiederherstellung der ursprünglichen Einstellungen 43 4.4.4 Datum und Zeit 42 4.4.5 Wiederherstellung der ursprünglichen Einstellungen 43 4.4.6 Auswahl der Schnittstelle 45 4.	7	4 1	Hauntmenü	24
4.3 Automatikprüfung. 26 4.3.1 Automatiksequenznummer-Hauptmenü. 27 4.3.2 Einstellung der Automatiksequenz. 28 4.3.3 Prüfparameter und Automatiksequenz. 29 4.3.4 Name und Beschreibung der Automatiksequenz. 29 4.3.5 Speicherung der Automatiksequenzeinstellungen (Sequenz, Nummer, Name) 31 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz 31 4.3.7 Einstellung des Pausezeichens und Anmerkungen 32 4.3.8 Vorbereitung einer Automatiksequenz 34 4.4 Sonstiges 39 4.4.1 Sprachauswahl. 39 4.4.2 Versorgungsnetz-System, Isc-Faktor, RCD-Standard 40 4.4.3 Abrufen und löschen von Messergebnisse 42 4.4.4 Datum und Zeit. 42 4.4.5 Wiederherstellung der ursprünglichen Einstellungen 43 4.4.6 Auswahl der Schnittstelle 45 4.4.7 LOCATOR - Leitungssucherfunktion 46 5.1 Isolationswiderstand 48 5.2 Durchgangsprüfungen 50 5.2		4.2	Finzelprüfung	24
4.3.1 Automatiksequenznummer-Hauptmenü. 27 4.3.2 Einstellung der Automatiksequenz. 28 4.3.3 Prüfparameter und Automatiksequenz. 29 4.3.4 Name und Beschreibung der Automatiksequenz. 29 4.3.5 Speicherung der Automatiksequenzeinstellungen (Sequenz, Nummer, Name) 31 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz 31 4.3.7 Einstellung des Pausezeichens und Anmerkungen 32 4.3.8 Vorbereitung einer Automatiksequenz 34 4.4 Sonstiges 39 4.4.1 Sprachauswahl 39 4.4.2 Versorgungsnetz-System, Isc-Faktor, RCD-Standard 40 4.4.3 Abrufen und löschen von Messergebnisse 42 4.4.4 Datum und Zeit 42 4.4.5 Wiederherstellung der ursprünglichen Einstellungen 43 4.4.6 Auswahl der Schnittstelle 45 4.4.7 LOCATOR - Leitungssucherfunktion 46 5.1 Isolationswiderstand 48 5.2 Durchgangsprüfungen 50 5.2.1 Niederohmmessung 50 5.2.		4.3	Automatikprüfung	26
4.3.2 Einstellung der Automatiksequenz 28 4.3.3 Prüfparameter und Automatiksequenz 29 4.3.4 Name und Beschreibung der Automatiksequenz 29 4.3.5 Speicherung der Automatiksequenzeinstellungen (Sequenz, Nummer, Name) 31 4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz 31 4.3.7 Einstellung des Pausezeichens und Anmerkungen 32 4.3.8 Vorbereitung einer Automatiksequenz 34 4.4 Sonstiges 39 4.4.1 Sprachauswahl 39 4.4.2 Versorgungsnetz-System, Isc-Faktor, RCD-Standard 40 4.4.3 Abrufen und löschen von Messergebnisse 42 4.4.4 Datum und Zeit 42 4.4.5 Wiederherstellung der ursprünglichen Einstellungen 43 4.4.6 Auswahl der Schnittstelle 45 4.4.7 LOCATOR - Leitungssucherfunktion 46 5.1 Isolationswiderstand 48 5.2 Durchgangsprüfungen 50 5.2.1 Niederohmmessung 50 5.2.2 Durchgangswiderstandsmessung 51 5.2.3		4.3.1	Automatikseguenznummer-Hauptmenü	27
4.3.3Prüfparameter und Automatiksequenz.294.3.4Name und Beschreibung der Automatiksequenz.294.3.5Speicherung der Automatiksequenzeinstellungen (Sequenz, Nummer, Name) 314.3.6Pausezeichen und Anmerkungen bei Automatiksequenz.314.3.7Einstellung des Pausezeichens und Anmerkungen324.3.8Vorbereitung einer Automatiksequenz.4.4Sonstiges4.4.1Sprachauswahl.394.4.24.4.2Versorgungsnetz-System, Isc-Faktor, RCD-Standard4.4.3Abrufen und löschen von Messergebnisse4.4.4Datum und Zeit.4.4.5Wiederherstellung der ursprünglichen Einstellungen4.4.6Auswahl der Schnittstelle4.4.7LOCATOR - Leitungssucherfunktion4.4.8Bediener5.1Isolationswiderstand5.2Durchgangsprüfungen5.2.1Niederohrmessung5.2.2Durchgangswiderstandsmessung5.3Früfung von Fehlerstrom-Schutzeinrichtungen (RCD)5.3Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD)		4.3.2	Einstellung der Automatiksequenz	28
4.3.4Name und Beschreibung der Automatiksequenz.294.3.5Speicherung der Automatiksequenzeinstellungen (Sequenz, Nummer, Name) 314.3.6Pausezeichen und Anmerkungen bei Automatiksequenz.314.3.7Einstellung des Pausezeichens und Anmerkungen324.3.8Vorbereitung einer Automatiksequenz.34Sonstiges394.4.1Sprachauswahl.394.4.2Versorgungsnetz-System, Isc-Faktor, RCD-Standard404.4.3Abrufen und löschen von Messergebnisse424.4.4Datum und Zeit.424.4.5Wiederherstellung der ursprünglichen Einstellungen434.4.6Auswahl der Schnittstelle454.4.7LOCATOR - Leitungssucherfunktion464.4.8Bediener465Messungen505.2.1Niederohmmessung505.2.2Durchgangsprüfungen505.2.3Kompensierung des Widerstands der Prüfleitungen515.3Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD)54		4.3.3	Prüfparameter und Automatiksequenz	29
4.3.5Speicherung der Automatiksequenzeinstellungen (Sequenz, Nummer, Name) 314.3.6Pausezeichen und Anmerkungen bei Automatiksequenz314.3.7Einstellung des Pausezeichens und Anmerkungen324.3.8Vorbereitung einer Automatiksequenz344.4Sonstiges394.4.1Sprachauswahl394.4.2Versorgungsnetz-System, Isc-Faktor, RCD-Standard404.4.3Abrufen und löschen von Messergebnisse424.4.4Datum und Zeit424.4.5Wiederherstellung der ursprünglichen Einstellungen434.4.6Auswahl der Schnittstelle454.4.7LOCATOR - Leitungssucherfunktion464.4.8Bediener465Messungen505.2.1Niederohmmessung505.2.2Durchgangsprüfungen515.2.3Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD)54		4.3.4	Name und Beschreibung der Automatiksequenz	29
4.3.6Pausezeichen und Anmerkungen bei Automatiksequenz314.3.7Einstellung des Pausezeichens und Anmerkungen324.3.8Vorbereitung einer Automatiksequenz344.4Sonstiges394.4.1Sprachauswahl394.4.2Versorgungsnetz-System, Isc-Faktor, RCD-Standard404.4.3Abrufen und löschen von Messergebnisse424.4.4Datum und Zeit424.4.5Wiederherstellung der ursprünglichen Einstellungen434.4.6Auswahl der Schnittstelle454.4.7LOCATOR - Leitungssucherfunktion464.4.8Bediener465Messungen485.1Isolationswiderstand505.2.1Niederohmmessung505.2.2Durchgangsprüfungen505.2.3Prüfung von Fehlerstorm-Schutzeinrichtungen (RCD)54		4.3.5	Speicherung der Automatiksequenzeinstellungen (Sequenz, Nummer, Name)	31
4.3.7 Einstellung des Pausezeichens und Anmerkungen 32 4.3.8 Vorbereitung einer Automatiksequenz 34 4.4 Sonstiges 39 4.4.1 Sprachauswahl 39 4.4.2 Versorgungsnetz-System, Isc-Faktor, RCD-Standard 40 4.4.3 Abrufen und löschen von Messergebnisse 42 4.4.4 Datum und Zeit 42 4.4.5 Wiederherstellung der ursprünglichen Einstellungen 43 4.4.6 Auswahl der Schnittstelle 45 4.4.7 LOCATOR - Leitungssucherfunktion 46 4.4.8 Bediener 46 5.1 Isolationswiderstand 48 5.2 Durchgangsprüfungen 50 5.2.1 Niederohmmessung 50 5.2.2 Durchgangswiderstandsmessung 51 5.2.3 Kompensierung des Widerstands der Prüfleitungen 52 5.3 Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD) 54		4.3.6	Pausezeichen und Anmerkungen bei Automatiksequenz	31
4.3.8 Vorbereitung einer Automatiksequenz 34 4.4 Sonstiges 39 4.4.1 Sprachauswahl 39 4.4.2 Versorgungsnetz-System, Isc-Faktor, RCD-Standard 40 4.4.3 Abrufen und löschen von Messergebnisse 42 4.4.4 Datum und Zeit 42 4.4.5 Wiederherstellung der ursprünglichen Einstellungen 43 4.4.6 Auswahl der Schnittstelle 45 4.4.7 LOCATOR - Leitungssucherfunktion 46 4.4.8 Bediener 46 5.1 Isolationswiderstand 48 5.2 Durchgangsprüfungen 50 5.2.1 Niederohmmessung 50 5.2.2 Durchgangswiderstandsmessung 51 5.2.3 Kompensierung des Widerstands der Prüfleitungen 52 5.3 Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD) 54		4.3.7	Einstellung des Pausezeichens und Anmerkungen	32
4.4Sonstiges394.4.1Sprachauswahl.394.4.2Versorgungsnetz-System, Isc-Faktor, RCD-Standard404.4.3Abrufen und löschen von Messergebnisse424.4.4Datum und Zeit.424.4.5Wiederherstellung der ursprünglichen Einstellungen434.4.6Auswahl der Schnittstelle454.4.7LOCATOR - Leitungssucherfunktion464.4.8Bediener465Messungen485.1Isolationswiderstand485.2Durchgangsprüfungen505.2.1Niederohmmessung505.2.2Durchgangswiderstandsmessung515.3Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD)54		4.3.8	Vorbereitung einer Automatiksequenz	34
4.4.1 Spracnauswani		4.4	Sonstiges	39
4.4.2 Versorgungshetz-System, isc-Faktor, RCD-Standard 40 4.4.3 Abrufen und löschen von Messergebnisse 42 4.4.4 Datum und Zeit		4.4.1	Sprachauswani	39
4.4.3 Abrulen und loschen von Messergebnisse 42 4.4.4 Datum und Zeit		4.4.Z	Abrufen und löschen von Messergebnisse	40 42
4.4.4 Datum und Zeit. 42 4.4.5 Wiederherstellung der ursprünglichen Einstellungen. 43 4.4.5 Auswahl der Schnittstelle 45 4.4.6 Auswahl der Schnittstelle 45 4.4.7 LOCATOR - Leitungssucherfunktion. 46 4.4.8 Bediener. 46 5 Messungen 48 5.1 Isolationswiderstand 48 5.2 Durchgangsprüfungen 50 5.2.1 Niederohmmessung 50 5.2.2 Durchgangswiderstandsmessung 50 5.2.3 Kompensierung des Widerstands der Prüfleitungen 52 5.3 Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD) 54		4.4.3	Abrulen und Toschen von Messergebnisse	4Z 12
4.4.6 Auswahl der Schnittstelle 45 4.4.7 LOCATOR - Leitungssucherfunktion 46 4.4.8 Bediener 46 5 Messungen 48 5.1 Isolationswiderstand 48 5.2 Durchgangsprüfungen 50 5.2.1 Niederohmmessung 50 5.2.2 Durchgangswiderstandsmessung 50 5.2.3 Kompensierung des Widerstands der Prüfleitungen 52 5.3 Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD) 54		4.4.4	Wiederberstellung der ursprünglichen Finstellungen	42 43
4.4.7 LOCATOR - Leitungssucherfunktion		446	Auswahl der Schnittstelle	45
4.4.8 Bediener		4.4.7	I OCATOR - Leitungssucherfunktion	46
5 Messungen 48 5.1 Isolationswiderstand 48 5.2 Durchgangsprüfungen 50 5.2.1 Niederohmmessung 50 5.2.2 Durchgangswiderstandsmessung 50 5.2.3 Kompensierung des Widerstands der Prüfleitungen 52 5.3 Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD) 54		4.4.8	Bediener	46
5Wessungen485.1Isolationswiderstand485.2Durchgangsprüfungen505.2.1Niederohmmessung505.2.2Durchgangswiderstandsmessung505.2.3Kompensierung des Widerstands der Prüfleitungen525.3Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD)54	~	Maaaa		40
5.1Isolationswiderstand485.2Durchgangsprüfungen505.2.1Niederohmmessung505.2.2Durchgangswiderstandsmessung505.2.3Kompensierung des Widerstands der Prüfleitungen525.3Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD)54	5		Ingen	4ŏ ⊿0
5.2Durchgangsprungen505.2.1Niederohmmessung505.2.2Durchgangswiderstandsmessung515.2.3Kompensierung des Widerstands der Prüfleitungen525.3Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD)54		つ. I 5 つ		40 50
5.2.1Niederorininessung505.2.2Durchgangswiderstandsmessung515.2.3Kompensierung des Widerstands der Prüfleitungen525.3Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD)54		5.Z 5.2 1	Niederehmmessung	50
5.2.3 Kompensierung des Widerstands der Prüfleitungen		J.Z. I ちりつ	Nicoci of Infinitessung Durchaanaswiderstandsmessung	50
5.3 Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD)		523	Kompensierung des Widerstands der Prüfleitungen	52
		5.3	Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD)	54

	531	Borührungsspappung (PCD LIc)	55
	5.3.1	Audiaczeit (PCD t)	
	5.5.2		50
	5.3.3	Ausiosestrom (RCD I_{Δ})	5/
	5.3.4	RCD-Automatikprutung	58
	5.4	Fehlerschleifenimpedanz und Fehlerstrom	60
	5.5	Leitungsimpedanz/unbeeinflusster Kurzschluss-Strom und Spannungsfall	62
	5.5.1	Spannungsfall	64
	5.6	Spannung, Frequenz und Phasenfolgeprüfung	67
	5.7	Erdungswiderstand	69
	5.7.1	Leiter Erdungswiderstandsmessung	69
	5.7.2	Prüfung mit einer Stromzange	70
	5.7.3	Prüfung mit zwei Stromzangen	72
	574	Prüfung des spezifischen Erdwiderstandes	73
	5.8	TRMS Strom	75
	5.0	Sonsoron und Adaptorn	
	5.9	Belouchtung	
	5.9.1		
	5.9.2	2 Ω Leitungs- /Schleitenimpedanzadapter	79
	5.10	Prüfung des Schutzleiteranschlusses	82
	5.11	Leitungssucher	83
	5.12	Schutzpegel von Überspannungsschutzeinrichtungen	85
6	Hand	lung mit Angahan	97
0	E 1		01
	0.1	Speicherauldau	87
	6.2	Aufbau der Speicherstruktur nach den Installationsangaben	87
	6.3	Speichern der Prufergebnisse	91
	6.3.1	Besonderheiten bei Speicherung von Ergebnissen	91
	6.4	Abrufen von Prüfergebnissen und Parametern	93
	6.4.1	Ergebnis abrufen	93
	6.5	Gespeicherte Angaben löschen	95
	6.5.1	Besonderheiten von Löschen	96
	6.6.	Installationsangabenstruktur aufbereiten	97
	6.6.1	Neue Stellen zufügen	. 97
	6.7.	Schnittstellen	100
	6.8	Der Betrieh mit Barcode-Scanner	101
	0.0.		101
7.	Wartu	ing	102
	7.1.	Austausch der Sicherung	102
	7.2.	Reinigung	102
	7.3.	Periodische Kalibrierung	102
	7.4.	Service	102
~			
8.	Iechi	nische Daten	103
	8.1.	Isolationswiderstand	103
	8.2.	Durchgang	104
	8.2.1.	Widerstand R200mA L-PE, N-PE	104
	8.2.2.	Widerstand R7mA L-PE, N-PE	104
	8.3.	RCD-Prüfung	105
	8.3.1.	Allgemeine Angaben	105
	8.3.2.	Berührungsspannung RCD-Uc	105
	8.3.3	Auslösezeit	105
	834	Auslösestrom	106
	8.4	Fehlerschleifenimnedanz und unheeinflusster Fehlerstrom	107
	0. 1 . Q / 1	Schutz: SICHEDI INC augowählt	107
	0.4.1.	Schutz: DCD auggewählt	107
	0.4.2.	Laitungaimpadanz und unbasiaflugatar Kurzachlusa Otarra und Orangeur (- "	107
	ö.ə.	Leitungsimpedanz und undeeintiusster Kurzschluss-Strom und Spannungsfall	108
	8.6.	Spannung, Frequenz und Phasenfolge	109

	8.6.1. Phasenfolge	
	8.6.2. Spannung	
	8.6.3. Frequenz	
	8.7. Online-Kiemmenspannungswachter	
	8.8. Erdungswiderstand Massarathada mit sin ar (
	8.8.1 Erdungswiderstand, Messmethode mit einer 3	Stromzange110
	8.8.2. Erdungswiderstand, Messmethode mit zwei S	
	8.8.3 Spezifischer Erdwiderstand	
	8.8.4. Hinweis zur Genauigkeit:	
	8.9. IRMS-5(1011)	
	0.10. Deleuchtung	
	8.11. 2 12 Leitungs-/Schleitenimpedanz	
	8.11.1. Leitungsimpedanz mit noner Autiosung	
	8.11.2. Fenierschiellenimpedanz mit noher Autosung	
	8.11.3. Berunrungsspannung	
	8.12. Schutzpeger von Oberspannungschutzeinnichtur	19en 114
	6.15. Aligemeine Angaben	
Α	A Anhang A - Sicherungstabelle	
В	B Anhang B – Zubehör für bestimmte Messungen	
С	C Anhang C – Leitungssucher-Empfänger R10K	
	C.1. Leitungssuche Anwendungsbeispiele	
	C.1.1. Stellung des Empfängers	
	C.1.2.Anwendung mit Stromzange	
	C 1.3. Anwendung mit Selektivsonde	
	C.2. Abstände	
	C.3 R10K Versorgung	
	C.4 Wartung	
D	D Anhang D - IT-Versorgungssystem	
-	D 1 Standard-Referenzen	131
	D 2 Grundlage	131
	D.3 Messungsgrundlage	
	D.4 Technische Angaben	
E	E Anhong E Notzo mit vormindertor Sponnung	120
E	E Annang E - Netze mit verminderter Spannung	
	E.I Stalluaru-Referenz	139
	E.2 Grundlage	
	E.3 MI 2101 Drüffunktionen und PLV Systeme	
	E 4 Tochnische Angeben	
	E 4 2 Feblerschleifenimpedanz und unheginflussta	Kurzschluss-Strom 1/2
	F 4.3 eitungsimpedanz und unbeeinflusster Kurzs	chluss-Strom 145
F	E Anhong E Länderong-ifigehe Länweige	440
г.	F. Annang F – Landerspezifische Hinweise	
	F.T. Osterreich- Unterstutzung der RGD-Typ G	
		4 4
	F.2. Schweiz- Unterstützung der RCDs $I\Delta N = 15 \text{ mA}$	
	F.2. Schweiz- Unterstützung der RCDs $I\Delta N = 15$ mA F.2.1. Unterstützung der RCDs $I\Delta N = 15$ mA	

1 Vorwort

METREL beglückwünscht Sie zum Kauf dieses Prüfgeräts und seines Zubehörs. Das Gerät wurde auf der Basis eines reichen Erfahrungsschatzes entwickelt, der durch langjährige Aktivitäten auf dem Gebiet der Prüftechnik für elektrische Anlagen gesammelt wurde.

Das EurotestXA Gerät ist als multifunktionales, tragbares Prüfinstrument für die Durchführung aller Messungen zur umfassenden Inspektion elektrischer Anlagen in Gebäuden gedacht. Folgende Messungen und Prüfungen können durchgeführt werden:

- □ Spannung und Frequenz und Phasenfolge,
- □ Isolationswiderstand,
- Niederohmmessung und Durchgangsmessung,
- Leitungsimpedanz / Spannungsfall
- □ Schleifenimpedanz,
- □ RCD-Schutz,
- □ Erdungswiderstand,
- □ Spezifischer Erdwiderstand,
- □ Suchen von Leitungen und Sicherungen,
- □ Ableits- und Lastströme,
- Der Prüfung von Isolationsüberwachungsgeräten (IMDs),
- □ Fehlerstrom im Falle des ersten Fehlers,
- Beleuchtung,
- \square 2 Ω Leitungs- / Schleifenimpedanz,
- Überspannungsschutzeinrichtungen

Die Prüfungen können an folgenden Versorgungssystemen durchgeführt werden:

- □ TN/TT,
- □ IT,
- □ 110 V mit verminderter Spannung (2 x 55 V), und
- □ 110 V mit verminderter Spannung (3 x 63 V).

Ein großes Matrix-Grafikdisplay mit Hintergrundbeleuchtung liefert einfach abzulesende Ergebnisse, Anzeigen, Messparameter und Meldungen. Die Bedienung ist einfach und eindeutig - der Bediener braucht zur Bedienung des Instruments keine spezielle Schulung (abgesehen von der Lektüre dieses Handbuchs).

Damit der Bediener ausreichende Kenntnis über Messungen für allgemeine und typische Anwendungen erlangt, empfehlen wir die Lektüre des Metrel-Handbuchs "Measurements on electric installations in theory and practice" (Messungen an elektrischen Anlagen in Theorie und Praxis).

Das Instrument ist mit allem notwendigen Zubehör für eine komfortable Prüfung ausgestattet. Es wird gemeinsam mit dem gesamten Zubehör in einer gepolsterten Tragetasche aufbewahrt.

2 Sicherheits- und Bedienungshinweise

2.1 Achtungen und Warnhinweise

Um ein hohes Maß an Bediensicherheit bei der Durchführung verschiedener Prüfungen und Messungen mit EurotestXA zu erreichen und um Schäden an der Prüfausrüstung zu vermeiden, müssen folgende allgemeine Warnhinweise beachtet werden:

- Das Symbol A am Instrument bedeutet: "Lesen Sie das Handbuch besonders sorgfältig". Dieses Symbol erfordert eine Bedienungsmaßnahme.
- Wenn das Prüfgerät nicht in der in diesem Benutzerhandbuch vorgeschriebenen Art und Weise benutzt wird, kann der durch das Gerät bereitgestellte Schutz beeinträchtigt werden.
- Lesen Sie dieses Benutzerhandbuch sorgfältig durch, sonst kann die Benutzung des Instruments f
 ür den Bediener, das Ger
 ät und f
 ür die zu pr
 üfende Anlage gef
 ährlich sein.
- Benutzen Sie das Gerät und das Zubehör nicht, wenn ein Schaden bemerkt wurde.
- Wenn eine Sicherung ausgelöst hat, diese gemäß Anleitungen in diesem Handbuch auswechseln.
- Beachten Sie alle allgemein bekannten Vorkehrungen, um während des Umgangs mit gefährlichen Spannungen das Risiko eines Stromschlags auszuschließen.
- Benutzen Sie das Gerät nicht bei Versorgungssystemen mit Spannungen über 550 V.
- Wartungseingriffe oder Einstellverfahren dürfen nur von kompetenten und befugten Personen durchgeführt werden.
- Verwenden Sie nur standardmäßiges oder optionales Prüfzubehör, welches von Ihrem Händler geliefert wurde.
- Beachten Sie, dass ältere und einige neue, optionale Prüfzubehörkomponenten, die mit diesem Instrument kompatibel sind, zur Überspannungskategorie CAT III / 300 V gehören. Dies bedeutet, dass die maximal zulässige Spannung zwischen den Prüfklemmen und Erde nur 300 V beträgt.
- Das Instrument enthält wiederaufladbare NiCd- oder NiMh-Batterien. Die Batterien dürfen nur mit dem gleichen Typ ausgetauscht werden, wie an Batterie-Informationsschild vorgeschrieben. Verwenden Sie keine Standard-Batterien während das Ladegerät angeschlossen ist, da Gefahr einer Explosion besteht!
- Im Inneren des Instruments gibt es gefährliche Spannungen. Klemmen Sie vor dem Öffnen der Abdeckung des Batteriefachs alle Prüfleitungen ab, entfernen Sie das Versorgungskabel und schalten Sie das Instrument aus.
- Beachten Sie alle allgemeine Vorkehrungen, um das Risiko eines Stromschlags während der Arbeit mit elektrischen Installationen zu vermeiden!

Warnhinweise bezüglich Messfunktionen: Isolationswiderstand

- Berühren Sie während der Messung bzw. vor der vollständigen Entladung das Prüfobjekt nicht. Es besteht die Gefahr eines Stromschlags!
- Wenn eine Isolationswiderstandsmessung an einem kapazitiven Objekt durchgeführt wurde, kann möglicherweise eine automatische Entladung nicht sofort erfolgen. Das Warnsymbol M und die tatsächliche Spannung wird während der Entladung angezeigt, bis die Spannung unter 10 V abfällt.

Hinweise bezüglich Messfunktionen:

Allgemein

- Der Anzeiger bedeutet, dass die ausgewählte Messung wegen ungültigen Bedingungen an Eingangsklemmen nicht durchgeführt werden kann.
- Isolationswiderstand-, Überspannungsschutzeinrichtung-, Durchgangsfunktionen- und Erdungswiderstandsmessungen sollen an stromlosen Anlagen durchgeführt werden, d.h. dass die Spannung zwischen den Prüfklemmen unter 10 V liegen sollte!
- BESTANDEN- / NICHT BESTANDEN- Meldung ist möglich, wenn die Grenze an EIN eingestellt wird. Anwenden Sie entsprechenden Grenzwert zur Überprüfung des Messergebnisses.
- Wenn zur Prüfung der elektrischen Installation nur zwei bzw. drei Leitungen angeschlossen werden, wird nur die Spannung zwischen diesen zwei Leitungen berücksichtigt.

Isolationswiderstand

- Bei der Messung des Isolationswiderstands zwischen Installationsleiter müssen alle Lasten abgeklemmt sein und Schalter geschlossen sein.
- Die geprüften Anlagen werden nach der beendeten Messung durch das Instrument automatisch entladet.
- □ Halten Sie die TEST-Taste gedrückt zur kontinuierlichen Messung.

Durchgangsfunktionen

- Parallele Widerstände und vorhandene Ströme in gemessener Schaltung beeinflussen das Prüfergebnis!
- Kompensieren Sie, falls notwendig, den Widerstand der Pr
 üfleitungen, bevor Sie die Durchgangsmessung durchf
 ühren, sehen Sie 5.2.3.
- Eine Widerstandsmessung von induktiven Bestandteilen, z.B. Transformatoren oder Elektromotor-Wicklungen ist wegen großem Einfluss der Induktivität nur bei kontinuierlicher Funktion (R7mA) möglich.

RCD-Funktionen

- Die Parametereinstellungen werden bei den anderen RCD Funktionen beibehalten.
- Die Messung der Berührungsspannung löst normalerweise die Fehlerstrom-Schutzeinrichtung nicht aus. Allerdings kann die Auslösegrenze infolge von Leckströmen überschritten werden, die zum PE-Schutzleiter oder über die kapazitive Verbindung zwischen den Leitern L und PE fließen.
- Die RCD- Auslösestrom und Auslösezeit-Pr
 üfungen werden nur nach einer erfolgreich bestandener Ber
 ührungsspannung-Vorpr
 üfung durchgef
 ührt.
- L- und N- Prüfklemmen werden, je nach der festgestellten Klemmenspannung, im Instrument automatisch umgedreht.

Fehlerschleifenimpedanz

- Fehlerschleifenimpedanzmessung (Schutz: SICHERUNG) löst die Fehlerstrom-Schutzeinrichtung aus. Verwenden Sie die Option Schutz: RCD, um die Auslösung zu verhindern.
- Die Fehlerschleifenimpedanz-Schutz: RCD Funktion dauert länger, ist aber wesentlich genauer als das R_L-Unterergebnis in RCD: Uc-Funktion.
- Die angegebene Genauigkeit der geprüften Parameter ist nur gültig, wenn die Netzspannung während der Messung stabil ist.
- L- und N-Prüfklemmen werden, je nach der festgestellten Klemmenspannung, richtig angeschlossen.

Leitungsimpedanz / Spannungsfall

- Messungen von Z_{L-L} mit den zusammengeschlossenen PE- und N-Pr
 üfspitzen löst Warnhinweise über gef
 ährliche PE-Spannung, wenn die TEST-Taste bet
 ätigt wird, aber die Messung wird nicht verhindert.
- Die angegebene Genauigkeit der gepr
 üften Parameter ist nur g
 ültig, wenn die Netzspannung w
 ährend der Messung stabil ist.
- L- und N-Prüfklemmen werden, je nach der festgestellten Klemmenspannung, richtig angeschlossen.

Erdungswiderstand

- Hohe vorhandene Störströme und Störspannungen können die Messergebnisse beeinflussen.
- Zu hoher Widerstand der S (Sonde) und H (Hilfserder) -Messsonden (>100*RE oder > 50kΩ) könnte die Messergebnisse beeinflussen. In diesem Fall erscheinen die Rp- und Rc- Anzeiger ohne der Meldung bestanden / nicht bestanden.
- Der Widerstand der E (Erder)- Messleitung wird dem Messergebnis des Erdungswiderstands zugefügt. Verwenden Sie nur Standard- Prüfzubehör ohne Verlängerungen für die E (Erder)-Sonde. Der Kontaktwiderstand der E (Erder)-Sonde muss ebenfalls beachtet werden!
- Bei der Prüfung mit einer Stromzange nimmt die Genauigkeit ab während das Verhältnis R / Re zunimmt!

Leitungssucher

- Der R10K-Empfänger sollte während der Arbeit mit dem Instrument immer in IND Modus eingestellt sein.
- Bei der Arbeit mit komplizierten Installationen, empfehlen wir, die unnötige Teile der Installation abzuschalten. Im anderen Fall breitet sich das Prüfsignal über die ganze Installation aus, und die Selektivität kann auf eine untragbare Ebene fallen.

2.2 Batterien und Laden

Das Instrument benutzt sechs (Größe AA) alkalische oder wiederaufladbare Ni-MH-Batteriezellen. Die Nennbetriebsstunden sind für Zellen mit einer Nennkapazität von 2100 mAh angegeben.

Batteriezustand wird bei eingeschaltetem Instrument immer am Display angezeigt. Bei einer entleerten Batterie wird dies angezeigt, wie im Abbildung 2.1 dargestellt. Diese Meldung wird für ein paar Sekunden angeblendet, dann wird das Instrument ausgeschaltet.

Abb. 2.1: Anzeige bei entleerten Batterien

Die Batterien werden immer dann geladen, wenn das Ladegerät an das Instrument angeschlossen ist. Eingebaute Schutzstromkreise steuern den Ladevorgang und gewährleisten die maximale Lebensdauer der Batterien. Die Polarität der Ladebüchse ist in Abb. 2.2 dargestellt.

Abb. 2.2: Polarität der Ladebüchse

Das Instrument erkennt das Ladegerät automatisch und startet den Ladevorgang an.

Symbole:	
	Anzeige des Batterie-Ladens
7.2	Batteriespannung
7.2	Anzeige des Batterie-Ladens Batteriespannung

Abb. 2.3: Laden-Anzeige

- Vor Öffnen der Abdeckung des Batterie-/Sicherungsfachs das gesamte Messzubehör abklemmen und das Instrument ausschalten, da sonst im Inneren gefährliche Spannung anliegt.
- Legen Sie die Zellen richtig ein, sonst funktioniert das Instrument nicht und die Batterien können entladen werden.
- Entfernen Sie das Batteriefach, wenn das Instrument über einen längeren Zeitraum nicht benutzt wird.

- Laden Sie Alkalbatterien nicht wieder auf!
- Beachten Sie die Handhabung-, Wartung- und Recycling-Vorschriften, die durch bezügliche Gesetzgebung und den Hersteller von alkalischen oder wiederaufladbaren Batterien festgelegt werden!
- Benutzten Sie nur das Ladegerät, das von dem Hersteller oder Händler des Pr
 üfger
 ätes geliefert wird, um eventuellen Feuer oder Stromschlag zu vermeiden!

2.2.1 Neue oder über eine längeren Zeitraum nicht benutzte Batterien

Während des Ladens neuer Batterien oder von Batterien, die über eine längere Zeit (länger als 3 Monate) nicht benutzt wurden, können unvorhersehbare chemische Prozesse auftreten. Ni-MH- und Ni-Cd-Batterien sind unterschiedlich betroffen (dieser Effekt wird manchmal Memory-Effekt genannt). Infolgedessen kann die Betriebszeit des Instruments bei den ersten Lade-/Entlade-Zyklen wesentlich verkürzt sein.

Folgendes wird empfohlen:

V	orkehrung	Anmerkungen
>	Vollständiges Laden der Batterien.	Mindestens 14 Stunden mit eingebautem Ladegerät.
>	Vollständiges Entladne der Batterien.	Kann bei der normalen Arbeit mit dem Instrument erfolgen.
>	Mindestens zweimalige Wiederholung des Lade-/Entlade- Zykluses.	Vier Zyklen werden empfohlen.

Bei der Verwendung externer, intelligenter Batterieladegeräte werden die Entlade-/Lade-Zykluse automatisch durchgeführt.

Hinweise:

- Das Ladegerät im Instrument ist ein so genanntes Zellenpack-Ladegerät. Das bedeutet, dass die Batterien während des Ladens in Reihe geschaltet sind. Daher müssen alle Batterien in ähnlichem Zustand vorliegen (ähnlicher Ladezustand, gleicher Typ und gleiches Alter).
- Eine einzige Batterie im schlechten Zustand (oder eine von einem anderen Typ) kann eine untaugliche Ladung des gesamten Batteriepacks bewirken (Erwärmung des Batteriepacks, wesentlich verkürzte Betriebszeit).
- Wenn nach Durchführung mehrerer Lade-/ Entladezyklen keine Verbesserung erreicht wird, sollte der Zustand der einzelnen Batterien bestimmt werden (durch Vergleich der Batteriespannungen, deren Überprüfung in einem Zellenladegerät usw.). Es ist sehr wahrscheinlich, dass sich nur einige der Batterien verschlechtert haben.
- Die oben beschriebenen Effekte dürfen nicht mit der normalen Minderung der Batteriekapazität über die Zeit verwechselt werden. Alle aufladbaren Batterien verlieren durch wiederholte Ladung/Entladung einiges an ihrer Kapazität. Die tatsächliche Kapazitätsverminderung als Funktion der Ladezyklen hängt vom Batterietyp ab und wird in den technischen Daten des Batterieherstellers angegeben.

2.3 Anwendbare Standards

Das Instrument wird in Übereinstimmung mit folgenden Vorschriften hergestellt und geprüft.

Elektromagnetische Verträglichkeit (EMC)

	Elektrische Ausstattung für Messung, Kontrolle und Laborgebrauch– EMC -Vorschriften	
EN 61226	Klasse B (tragbare Ausstattung, die in kontrolliertem EM-Umgebung	
EIN 01320	benutzt wird)	
Sicherheit (LVD)		
EN 61010 - 1	Sicherheitsvorschriften für Elektrische Ausstattung für Messung, Kontrolle und Laborgebrauch – Teil 1: Allgemeine Anforderungen	
EN 61010 - 031	Sicherheitsvorschriften für tragbares Zubehör für elektrische Messung und Prüfung	g
Messungen		
EN 61557	Elektrische Sicherheit in Niederspannungsnetzen Geräte zum Prüfen, Messen oder Überwachen von Schutzmaßnahmen, Messungen .	
	Teil 1Allgemeine AnforderungenTeil 2IsolationswiderstandTeil 3SchleifenwiderstandTeil 4Widerstand von Erdungsleitern, Schutzleitern und PotentialausgleichsleiternTeil 5ErdungswiderstandTeil 6Fehlerstrom-Schutzeinrichtungen (RCD) in TT- und TN- SystemenTeil 7PhasenfolgeTeil 10Kombinierte Messgeräte	
EN 60364-4-41	Errichten von Niederspannungsanlagen	
	Errichten von Niederspannungsanlagen – Teil 5-52: Auswahl ur	nd
EN 60364-5-52	Errichtung elektrischer Betriebsmittel – Kabel- und Leitungsanlagen	
IEC 62423	Typ B Fehlerstrom-/Differenzstrom-Schutzschalter mit und ohn eingebautem Überstromschutz für Hausinstallationen und für ähnlich Anwendungen	ie ie

Hinweis über EN und IEC Standards:

Dieses Benutzerhandbuch bezieht sich auf europäische Standards. Jeder Standard der EN 6xxxx (e.g. EN 61010)-Serie entspricht dem IEC-Standard mit der gleichen Nummer (z.B. IEC 61010) und unterscheidet sich nur in ergänzten Teilen, die von der Europäischen Harmonisierung erforderlich werden.

3 Beschreibung des Instruments

3.1 Front-Bedienfeld

Abb. 3.1: Front-Bedienfeld

Legende:

1	ON / OFF	EIN/AUS-Ta Instruments. Das Instrum Betätigung e	ste zur Ein- bzw. Ausschaltung des ents wird 15 Minuten nach der letzten einer Taste automatisch ausgeschaltet.	
2	HELP	HELP-Taste	für den Zugang zu den Hilfe-Menüs.	
3	F2	F2-Taste zu F2-Taste zu Namens im	r Zuführen einer neuen Speicherstelle. r Bestätigung des ausgewählten Einstellungsmenü.	
4	F1	F1-Taste für Einstellungs	^r den Zugang zu dem menü des Speichers.	
5	MEM	MEM-Taste zum Arbeiten mit dem Speicher.		
6	ESC	ESC-Taste z	zum verlassen der ausgewählten und	
		angezeigten	Option.	
7	ТАВ	Taste zum S	Schalten zwischen Display-Felder.	
	Cursortasten mit der TEST- Taste	Cursor	Taste für Auswahl der Prüffunktion und deren Betriebsparameter.	
8		TEST	Taste zum Starten der Messungen. Die TEST-Taste fungiert auch als PE- Prüffühler.	
9	HINTERGRUNDBELEUCHT UNG, KONTRAST	Taste zur Ve Hintergrund Kontrasts.	eränderung der Stärke der beleuchtung und Einstellung des	
10	LCD	320 x 240-P Hintergrund	unkt-Matrix-Display mit peleuchtung.	

3.2 Anschlussfeld

Abb. 3.2: Anschlussfeld

Legende:

1	Prüfanschluss	Prüfanschluss
2	Charger socket	Anschluss des Ladegeräts.
3	PS/2-Anschluss	RS 232 Schnittstelle.
4	Schutzdeckel	Schutz vor gleichzeitigem Zugang zum Prüfanschluss und Ladegerät-/Schnittstellen-Anschlüsse.
5	USB-Anschluss	USB-Schnittstelle
6	Stromzangenanschluss	Prüfanschluss für Stromzange.

Warnungen!

- Die maximal zulässige Spannung zwischen Prüfklemmen beträgt 550 V!
- Die maximal zulässige kurzfristige Spannung des externen Ladegeräts beträgt 14 V!
- Keine Spannung an den Stromzangenanschluss stecken. Der maximal zulässige dauerliche Strom an dem Anschluss beträgt 30mA!

3.3 Rückwand

Abb. 3.3: Rückwand

Legende:

- 1 Abdeckung des Batterie- / Sicherungsfachs
- 2 Rückwand-Informationsschild
- 3 Befestigungsschrauben für die Abdeckung des Batterie- / Sicherungsfachs

Abb 3.4:Batterien- und Sicherungsfach

Legende:

1	Sicherung F1	T 315 mA / 250 V
2	Sicherung F2	T 4 A / 500 V
3	Sicherung F3	T 4 A / 500 V
4	Seriennummernschild	
5	Batterien	Größe AA, alkalische / wiederaufladbare NiMH oder NiCd
6	Batterienhalterung	Kann aus dem Instrument entfernt werden.

3.4 Bodenansicht

Abb. 3.5: Bodenansicht

Legende:

- 1 Boden-Informationsschild
- 2 Tragriemenöffnungen
- 3 Schraube (unter Seitenbedeckung)

3.5 Display- Aufbau

INSULATION: ALL 08:37	Rin:MΩ UmcV Ripe:MΩ UmcV Rnpe:MΩ UmcV	Ergebnisfeld
Rin: MΩ Uni V Ripei MΩ Dm: V Rinpe: MΩ Um V	TEST: ALL Uiso: 500V Limit: OFF	Prüfparameterfeld
TEST ALL		Meldungsfeld
Abb. 3.6: Typisches Einzelprüfungs-Display		Klemmenspannungs wächter
		Funktionswahl- Tasten

🖾 INSULATION: ALL 08:37 🔒 Menuzeile

3.5.1 Klemmenspannungswächter

Der Klemmenspannungswächter zeigt die aktuellen Spannungen an Prüfklemmen. Im unteren Teil werden die Meldungen über gemessene Spannungen und ausgewähltes Spannungssystem angezeigt (siehe *4.4.2 Einstellungen*).

	Die Online-Spannung wird zusammen mit der Prüfklemmendarstellung angezeigt. Alle drei Prüfklemmen werden für die ausgewählte Messung verwendet.
	L- und N-Prüfklemmen werden für die ausgewählte Messung verwendet.
	L und PE sind aktive Prüfklemmen; die N-Klemme soll auch zur Referenz im Messkreis angeschlossen werden.
	Polarität der Prüfspannung, die an Ausgangklemmen angewandt wird.
	Isolationsprüfung Die N und PE Prüfleitungen müssen während der Messung verbunden sein.
123 321	Dreiphasen-Anschluss-Anzeige.
TT TN	TT- / TN-Versorgungssystem.
IT	IT-Versorgungssystem.
RV	Versorgungssystem mit verminderter Spannung.
?	Unbekanntes Versorgungssystem (atypische Spannung an Eingangsklemmen für das ausgewählte Versorgungssystem).
\Diamond	L – N-Polarität verändert

SF	Erster Fehler im IT-Versorgungssystem.
4	Achtung! Gefährliche Spannung an PE-Klemme! Beenden Sie sofort die Arbeit und beseitigen Sie den Fehler / das Anschlussproblem, bevor Sie fortsetzen!

3.5.2 Menüzeile

In der Menüzeile wird der Name der ausgewählten Funktion angezeigt. Es werden auch weiter Informationen über aktive Cursor / TEST-Tasten und Batteriezustand angeblendet.

INSULATION: ALL	Funktionsname.
08:37	Zeit.
	Aktive Tasten am Cursor / TEST -Taste (\checkmark und TEST bei diesem Beispiel).
Î	Batteriekapazität.
0	Schwache Batterie. Batterie ist zu schwach, um eine ein richtiges Ergebnis garantieren zu können. Die Batteriezellen sollen ausgetauscht oder wiederaufladen werden.
ŧ.	Wiederaufladen (beim angeschlossenen Ladegerät).

3.5.3 Meldungsfeld

Im Meldungsfeld werden verschiedene Warnhinweise und Meldungen angezeigt.

4	Achtung! An die Prüfklemmen wird eine hohe Spannung angewandt.
	Messung im Verlauf, berücksichtigen Sie die angeblendeten Warnhinweise.
▶	Die Bedingungen an Eingangsklemmen erlauben die Messung anzufangen (die TEST -Taste), berücksichtigen Sie weitere angeblendete Warnhinweise und Meldungen.
×	Die Bedingungen an Eingangsklemmen erlauben keine Messung anzufangen (die TEST -Taste), berücksichtigen Sie angeblendete Warnhinweise und Meldungen.
	Der Widerstand der Prüfleitungen bei DURCHGANG- Prüfungen ist nicht kompensiert, sehen Sie Anschnitt 5.2.3 zur Kompensierungsvorgang.
	Der Widerstand der Prüfleitungen bei DURCHGANG - Prüfungen ist kompensiert.
E1 Zref	Möglichkeit der Ausführung einer Referenzmessung (Zref) in der Unterfunktion
!∕ ⊖	RCD löste während der Messung aus (bei RCD-Funktionen).
	Das Instrument ist heißgelaufen, die Temperatur im Inneren des Instruments ist höher als die Sicherheitsgrenze, und die Messung ist

	untersagt, solange die Temperatur nicht unter dem erlaubten Wert liegt.
i i vita	Sicherung F1 hat durchgebrannt oder wurde nicht eingelegt
لكجع	(DURCHGANG- und ERDUNG- Funktionen).
\blacksquare	Das Ergebnis kann gespeichert werden.
-\-	Störspannungen während der Messung. Die Ergebnisse können beeinträchtigt sein.
5	Die Rc- oder Rp-Sondenwiderstände können das Ergebnis des
RcRp	Erdungswiderstandsprüfung beeinflussen.
\leq	Ein niedriger Zangenstrom könnte das Ergebnis de
I	Erdungswiderstandsprüfung beeinflussen.
	Die im Automatiksequenzprüfung aktivierte Pause. Folgen Sie die erforderlichen Schritte für eine pausierte Funktion.

3.5.4 Ergebnisfeld

\checkmark	Das Messergebnis liegt innerhalb vorbestimmten Grenzen (BESTANDEN).
×	Das Messergebnis liegt außerhalb vorbestimmten Grenzen (NICHT BESTANDEN).
0	Messung wurde abgebrochen. Beachten Sie angezeigte Warnhinweise und Meldungen.

3.5.5 Andere Meldungen

Hard Reset	Die Einstellungen des Instruments und Messparameter/- Grenzen wurden auf die ursprüngliche (Fabrik) Werte eingestellt. Für weitere Informationen lesen Sie Abschnitt 4.8.5. <i>Abrufen der ursprünglichen Einstellungen.</i>
CAL ERROR!	Wichtige interne Gerätedaten wurden beschädigt oder verloren. Wenden Sie sich an Ihren Händler oder Hersteller um die Ursache zu klären.

3.5.6 Warntöne

	Achtung! An der PE-Klemme wurde eine gefährliche
Periodischer Ton	Spannung festgestellt. Lesen Sie Abschnitt 5.8 für weitere
	Informationen.

3.5.7 Hilfe

Taste:

	HILFE	Die HILFE-Taste zur Aufmachen des Hilfe-Menüs.
--	-------	--

Im Hilfemenü befinden sich Anschlussdiagrame, die die empfohlene Anschlüsse des Instruments an die elektrische Installation darstellen, und Informationen über das Instrument liefern. Betätigung der **HILFE**-Taste öffnet das Hilfemenü für die ausgewählte Einzelprüfungs-Funktion, wobei in anderen Betriebsmenüs zuerst die Spannungssystem-Hilfe angezeigt wird.

Tasten Im Hilfe-Menü:

\leftarrow / \rightarrow	Die Taste zur Auswahl des nächsten_Hilfe-Displays.
HILFE	Die HILFE-Taste zur Routieren durch Hilfe-Displays.
ESC	Die ESC-Taste zum Verlassen des Hilfemenüs.

Abb. 3.7: Beispiele des Hilfe-Displays

3.5.8 Einstellung der Hintergrundbeleuchtung und des Kontrasts

Die **BACKLIGHT-**Taste dient zur Einstellung der Hintergrundbeleuchtung und des Kontrasts.

Kurz gedrückt	Einstellen der Hintergrundbeleuchtung-Stärke.
Für 1 Sekunde gedrückt	Hohe Hintergrundbeleuchtungsstärke bleibt eingeschaltet bis das Instrument nicht ausgeschaltet wird.
Für 2 Sekunden gedrückt	Bargraph für LCD-Kontrasteinstellung wird angezeigt.

Abb. 3.8:Kontrasteinstellungsmenü

Tasten zur Einstellung des Kontrasts:

÷	Die Taste zur Reduzierung des Kontrasts.
\rightarrow	Die Taste zur Bestärkung des Kontrasts.
TEST	Die Taste zur Bestätigung des neuen Kontrasts.
ESC	Die Taste für Ausgang ohne Änderungen.

3.6 Tragen des Instruments

Mit dem standardmäßig mitgelieferten Tragriemen kann das Instrument auf unterschiedliche Weise getragen werden. Der Bediener kann sich die für seine Tätigkeit geeignete Form aussuchen, siehe folgende Beispiele:

Das Instrument hängt um den Hals des Bedieners schnelles Aufstellen und Mitnehmen.

Das Instrument kann sogar in der gepolsterten Tragetasche benutzt werden - das Prüfkabel wird durch die Öffnung vorn angeschlossen.

3.7 Ausstattung und Zubehör des Instruments

3.7.1 Standardausstattung

- Instrument
- Gepolsterte Tragetasche
- Benutzerhandbuch
- Produktprüfdaten
- Garantieerklärung
- Konformitätserklärung
- Universalprüfkabel
- Drei Prüfspitzen
- Schuko-Prüfkabel
- Drei Krokodilklemmen
- □ Ladegerät
- CD mit Benutzerhandbuch, das Handbuch Measurements on electric installations in theory and practice (Messungen an elektrischen Anlagen in Theorie und Praxis), PC-Software
- USB Kabel
- RS232 Kabel

3.7.2 Optionales Zubehör

Eine Aufstellung des auf Anfrage von Ihrem Händler erhältlichen optionalen Zubehörs finden Sie auf dem Beilageblatt.

4 Bedienung des Instruments

4.1 Hauptmenü

Im Hauptmenü ist es möglich, verschiedene Funktionen des Instruments einzustellen.

- □ Einzelprüfungs-Menü (siehe 4.2),
- □ Automatiksequenzmenü (siehe 4.3),
- □ Sonstiges (siehe 4.4).

Abb. 4.1: Hauptmenü

Tasten:

$\mathbf{\Psi} / \mathbf{\Lambda}$	Menü wählen.
TEST	Ausgewähltes Menü übernehmen.

4.2 Einzelprüfung

dient zur Durchführung der Einzelprüfung / Messfunktionen.

Abb. 4.2: Beispiel eines typischen Einzelprüfungs-Displays

Tasten im Hauptfeld des Einzelprüfungs-Display:

	Prüfung / Messfunktion wählen:
	VOLTAGE> Spannung und Frequenz, Phasenfolge.
	Isolationswiderstand.
	CONTINUITY> Niederohmmessung und Durchgangsmessung.
	<z-line> Leitungsimpedanz.</z-line>
ϵ / \rightarrow	<z-loop> Fehlerschleifenimpedanz.</z-loop>
	RCD-Prüfung.
	<earth> Erdungswiderstand.</earth>
	Control Con
	SENSOR> Beleuchtung.
	<varistor test=""> Überspannungsschutzeinrichtungen.</varistor>

	Die folgenden Funktionen sind verfügbar nur, wenn das IT-			
	Versorgungssystem ausgewählt wird (sehen Sie Abschnitt 4.4.2):			
	IMD> Prüfung von Isolationsüberwachungsgeräten (IMDs),			
	ISFL> Fehlerstrom im Falle des ersten Fehlers			
↓/↑	Unterfunktion und ausgewählte Messfunktion wählen.			
TEST	Ausgewählte Prüfung / Messfunktion durchführen.			
TAB	Prüfparameterfeld übernehmen.			
ESC	Einzelprüfung- Menü verlassen.			
MEM	Messergebnisse speichern / Gespeicherte Ergebnisse abrufen.			

Tasten im **Prüfparameterfeld**:

Ψ / Λ	Messparameter wählen.
\leftarrow / \rightarrow	Ausgewählten Messparameter ändern.
TEST, TAB, ESC	Zurück zum Hauptfeld.

Allgemeinregel zum Ermöglichen der **Grenzwerten** für Abwerten der Messung / Prüfungsergebnisse:

AUS Kein Vergleich mit Grenzwert

Limit EIN Grenzwert EIN – Vergleich möglich Grenzwert Wert – minimaler / maximaler Grenzwert*

* Die Art des Grenzwerts hängt von bestimmten Funktionen ab.

Weitere Informationen über die Bedienung des Instruments bei Einzelprüfungs-Funktionen erhalten Sie im Abschnitt 5.

4.3 Automatikprüfung

dient zur automatischen Durchführung der vorbestimmten Messungen.

	AUTO SEQUENCE	Automatiksequenzmenü.
	#3 TEST EXA1	Ausgewählte Sequenznummer und (optional) Name.
□INSULATION □VOLTAGE □Z-LINE □Z-LOOP	CONTINUITY INSULATION VOLTAGE Z-LINE Z-LOOP RCD	Sequenzfeld.
RCD Image: Constraint of the setting sett		Prüfparameterfeld / Beschreibungsfeld der Automatiksequenz.
Abb. 4.3: Typisches Automatiksequenz-Display	RENAME SAVE settings	Speicherung und Umbenennen der Optionen.

So wird Automatiksequenz durchgeführt:

- □ Wählen Sie Automatiksequenz (siehe *4.3.2*).
- Schließen Sie das Instrument an die zu pr
 üfende Anlage an wie f
 ür die erste Messung der Sequenz erforderlich.
- Drücken Sie die TEST-Taste.
- Das Instrument stoppt vor mit dem Pausezeichen III gekennzeichneten Funktionen. Wenn die Bedingungen an den Eingangsklemmen gültig sind, wird die Prüfung mit der TEST-Taste fortgesetzt.
- Anmerkungen bezüglich gehaltene Funktion werden angezeigt (optional).
 - Drücken Sie die TAB-Taste zum Schalten zwischen dem Anmerkungsmenü und Automatiksequenzmenü.
 - Wenn die Bedingungen an den Eingangsklemmen g
 ültig sind, wird die Pr
 üfung mit der TEST-Taste fortgesetzt.
 - Drücken Sie die F1-Taste, um die gehaltene Funktion auszulassen. Die Prüfung wird mit der nächsten Prüfung fortgesetzt (falls eine) oder wird beendet.
 - Drücken Sie die ESC-Taste, um die restlichen Funktionen auszulassen und die Automatiksequenz zu beenden.
- Die Messungen werden hintereinander durchgeführt, solange die Bedingungen an den Eingangsklemmen für jede einzelne Prüfung gültig sind. Anderenfalls bleibt das Instrument stehen (Summerton). Die Automatiksequez wird fortgesetzt:
 - Nach der Zurückerstattung der entsprechenden Bedingungen an den Eingangsklemmen (z.B. mit Wiedereinschalten des Hauptschalters, RCD-s).
 - Falls die F1-Taste betätig wird, wird diese Funktion ausgelassen werden.
 - Mit der Betätigung der ESC-Taste, um die restlichen Funktionen auszulassen und die Automatiksequenz zu beenden.
- Die Ergebnisse der beendeten Automatiksequenz können angesehen und gespeichert werden. Weitere Informationen erhalten Sie im Abschnitt 6.

Messungen nach der beendeten Prüfung sind mit einem der folgenden Symbole gekennzeichnet.

X CONTINUITY	Messung beendet und nicht bestanden.		
INSULATION	Messung beendet und bestanden.		
• VOLTAGE	Messung beendet. Keine Vergleichgrenze wurde angewandt.		
Z-LINE	Messung noch nicht durchgeführt (während der Prüfung) oder sie wurde ausgelassen.		
\checkmark	Bestehendes Gesamtergebnis wird gemeldet, wenn alle durchgeführte Prüfungen bestanden.		
×	Nicht bestehendes Gesamtergebnis wird gemeldet, wenn eine oder mehrere durchgeführte Prüfungen nicht bestanden.		

Abb. 4.4: Warten auf gültige Bedingungen an den Eingangsklemmen

Abb. 4.5: Beispiel eines bestehenden Gesamtergebnisses

Abb. 4.6: Beispiel eines nicht bestehenden Gesamtergebnisses

4.3.1 Automatiksequenznummer-Hauptmenü

Im Instrument können bis zu 99 Automatiksequenzen gespeichert werden.

	#3	Automatiksequenznummer.				
#3*	*	Anzeiger, dass die voreingestellte Sequenz geändert und noch nicht gespeichert wurde, Automatiksequenz kann trotzdem durchgeführt werden.				
LOT EXAT	TEST EXA1	Optionaler Sequenzname (sehen 4.3.4).				
	ş	Anzeiger für eine geschlossene Sequenz (siehe 4.3.2).				

4.3.2 Einstellung der Automatiksequenz

Tasten im Hauptmenü der Automatiksequenz:

TEST	Die ausgewählten Prüfsequenzen starten.
1201	Pause III vor der Prüfung annehmen / löschen.
\leftarrow / \rightarrow	Prüfungssequenznummer oder Messfunktion wählen (siehe 4.3.1).
Ψ / Λ	Einzelne Sequenzschritte / Messfunktion wählen.
TAB	Prüfparameterfeld übernehmen (siehe 4.3.3).
ESC	Automatiksequenzmenü ohne Änderungen verlassen.
F1	Übernehmen des Einstellungsmenüs zur Umbenennung der ausgewählten
	Prüfsequenz und Eintragung derer Beschreibung (siehe 4.3.4).
	Die F1-Taste zum Zugang zum Menü für Einstellung des Pausezeichens
	und Anmerkungen (siehe 4.3.7).
F2	Angenommene Prüfsequenz speichern (siehe 4.3.5).
MEM	Ergebnisse der Automatiksequenz speichern / abrufen.

Funktionsauswahl

Parameterauswahl

Abb. 4.7: Beispiel der Einstellung der Automatiksequenz

Für jeden der 6 vorbestimmten Sequenzschritte kann jede der folgenden Messfunktionen gewählt werden: Spannung, Durchgang, Isolation, Leitungsimpedanz, Fehlerschleifenimpedanz, Erdung und RCD. Das Feld kann auch leer gelassen werden (---).

Die Prüfparameter werden so wie bei Einzelprüfung einzelnen Messungen angewandt. Das Prüfparametermenü der ausgewählten Messung ist an der Rechtseite des Displays verfügbar.

Bei vorhandenem Pausezeichen III stoppt die Automatiksequenz, bis die Fortsetzung mit der **TEST**-Taste nicht bestätigt wird. Es ist ratsam diese Funktion zu benutzen, wenn vor der nächsten Messung eine Änderung des Anschlusses-durchzuführen ist.

Die Schlüssel-Ikone weist auf eine geschlossene Sequenz hin. Es ist möglich, die geschlossenen Sequenzen zu modifizieren und sie zu starten. Die Modifizierungen können jedoch nicht gespeichert werden.

4.3.3 Prüfparameter und Automatiksequenz

Tasten im Prüfparametermenü (bei Automatiksequenz):

\leftarrow / \rightarrow	Prüfparameterwert wählen oder Parameter ermöglichen / nicht ermöglichen.		
$\mathbf{\Psi} / \mathbf{\Psi}$	Prüfparameter wählen.		
TEST, TAB, ESC	AB, ESC Zurück zum Automatiksequenz-Hauptmenü.		

Immer wenn eine neue Funktion für Automatiksequenz gewählt wird, sollen die Prüfparameter überprüft und zu entsprechenden Werte geändert werden.

Verbinden von Prüfparameter

Wenn die vorbereitete Sequenz aus dem *Abschnitt 4.3.2* mindestens zwei Impedanzoder RCD- Prüfungen enthält, ist es möglich, die Prüfparameter einer Funktion an die anderen der genannten in der selben Sequenz zu verbinden.

Die verbindene Parameter beziehen sich auf:

- Sicherungsangaben, und
- RCD-Angaben, außer der Anfangspolarität des Prüfstroms.

Zusätzliche Taste:

F2	Prüfparamete	Prüfparameter verbinden.		
			21:58 📋	

Abb.4.8: Verbinden von Prüfparameter

4.3.4 Name und Beschreibung der Automatiksequenz

F1	Prüfsequenzname-Menü	aus	dem	Automatiksequenzhauptmenü
	annehmen.			

In diesem, aus zwei Ebenen bestehenden Menu, können der Name und die Beschreibung der ausgewählten Automatiksequenz zugefügt oder geändert werden.

Abb. 4.9: Automatiksequenznamemenü

Tasten für die 1. Ebene:

\leftarrow / \rightarrow	Zwischen dem Namen- und Beschreibungsfeld wählen.
TEST	Zurück zum Hauptmenü der Automatiksequenz gehen.
F1	Das ausgewählte Feld einstellen (2. Ebene).
F2	Namen bestätigen und zurückgehen.
ESC	Zum Automatiksequenzmenü ohne Änderungen zurückgehen.

Abb. 4.10: Einstellungsmenü für den Automatiksequenznamen

Tasten für die 2. Ebene:

AUTO SEQUE	NCE 09:50 🛢
_name of test	description of test
	DESCRIPTION
012 ABC KLM (2+) (2 SAVE	3456789 DEF6H1J XOP0RST XY2.,

Abb. 4.11: Einstellungsmenü für die Beschreibung der Automatiksequenz

Betonte Tasten Ausgewähltes Symbol oder Aktivität.			
$\leftarrow / \rightarrow / \checkmark / \land$	Die Tasten zum Auswahl des Symbols oder der Aktivität.		
TEST	Das ausgewählte Symbol eintragen oder die ausgewählte Aktivität durchführen.		
F1	Das letzteingetragene Symbol in der Namenzeile löschen.		
F2	Den Namen bestätigen und zur 1 ⁻ Ebene zurückgehen.		
ESC	Zur 1. Ebene ohne Änderungen zurückgehen.		

Die Beschreibung einer Automatiksequenz kann am meisten aus 100 Zeichen bestehen.

4.3.5 Speicherung der Automatiksequenzeinstellungen (Sequenz, Nummer, Name)

F2 Dialog-Fenster zum Speicherung der Automatiksequenzeinstellungen im Automatiksequenzhauptmenü öffnen.

Das Dialog-Fenster ermöglicht Speicherung der bestehenden Automatiksequenzeinstellungen an eine andere Stelle oder die bestehende Stelle zu überschreiben.

AUTO SEQUEN	ICE 10:13 📋
#6* TEST EXA1	
Z-LI Z-L(Save Autot	est Settings to:
	#6
	F2 SAVE settings

Abb. 4.12: Das Dialog-Fenster

Tasten:

\leftarrow / \rightarrow	Automatiksequenznummer wählen.
TEST	Speicherung bestätigen.
ESC	Zum Automatiksequenzmenü ohne Änderungen zurückgehen.

Die Automatiksequenzeinstellungen sind in einem FLASH-Speicher gespeichert. Die Automatiksequenzvorgängen bleiben gespeichert, solange sie von dem Benutzer nicht geändert werden.

Es ist nicht möglich, eine Automatiksequenz an geschlossenen Stellen zu speichern. Die geschlossene Automatiksequenz kann an eine geöffnete Stelle kopiert werden. In diesem Fall wird die Sequenz geöffnet werden.

AUTO SEQU	ENCE	09:52 🔒
#7 LIVE 3ph, RCD	?	
Z-LOOP		
■ Z-LINE X 6 6 0 ■ Z Save Auto sequence settings to:		
	#7 9 	SAVE settings

Abb. 4.13: Das Speicherungs-Dialog für geschlossene Sequenz

AUTO SEQUEN	NCE 09:52 📋
#7 S	
Z-LOOP	
□ Z-LINE P□ Z-LINE	
Z-LIN RCD	tion is locked!
	ОК
M RENAME	SAVE settings)

Abb. 4.14: Speicherung nicht bestanden

Falls es notwendig wird, ist es möglich, alle geschlossene Sequenzen zu öffnen (für weitere Informationen sehen Sie 4.4.5).

4.3.6 Pausezeichen und Anmerkungen bei Automatiksequenz

Die Automatiksequenz wird gehalten, wenn mit der Messung das Pausezeichen und die vorbestimmte Anmerkung angeblendet werden. Wenn die Eingangsbedingungen gültig sind, kann die Automatiksequenz mit Betätigung der **TEST**-Taste fortgesetzt werden.

Bedienung des Instruments

Abb. 4.15: Anmerkung, die mit der Pause angeblendet wird Abb. 4.16: Blinkende Pausezeichen im Haupt-Display

Abb. 4.15/4.16: Beispiele für Displays in der Pause der Automatiksequenz

Tasten:

ТАВ	Die TAB-Taste zum Schalten zwischen dem Anmerkungs-Display und dem Hauptmenü der Automatiksequenz.
TEST	Die TEST-Taste zum Fortsetzung der gehaltener Prüfung.
F1	Die F1-Taste zum Auslassen der gehaltener Prüfung.
ESC	Die ESC-Taste zum Auslassen aller Prüfungen und zur Beendung der Automatiksequenz.

4.3.7 Einstellung des Pausezeichens und Anmerkungen

Der Bediener des Instruments kann Anmerkungen bezüglich Messungen vorbereiten. Warnhinweise, Anschlusshinweise oder andere nützliche Anmerkungen bezüglich Prüfungssequenz können an diese Weise angewandt werden.

F1 Die F1-Taste zur Eintragung des Pauseeinstellungs- und Anmerkungs-Menüs für die ausgewählte Funktion im Hauptmenü der Automatiksequenz.

Einstellung der Anmerkung ist möglich, wenn das Pausezeichen an EIN eingestellt wird.

PA Ne	USE,	сомм	ENT	
ENT :	OFF			
	INE ENT :	INE INE INF ENT I	INE INE INE INF INF INF INF INF INF INF INF	PAOSE, COMMENT INE ENTE

Abb. 4.17: Pause-Einstellungsmenű

Tasten:

\leftarrow / \rightarrow	Das Pausezeichen ermöglichen (EIN) oder verhindern (AUS).
$\mathbf{\Psi} / \mathbf{\Psi}$	Zwischen dem Pausenzeichen- und Anmerkungsfeld wählen.
TEST	Den aktuellen Auswahl bestätigen, und zum Hauptmenü der Automatiksequenz rückkehren.
ESC	Zum Hauptmenü der Automatiksequenz ohne Änderungen rückkehren.

Einstellungsmenü für Anmerkungen ermöglicht den Auswahl und Einstellung der Pausenanmerkung.

Abb. 4.18: Einstellungsmenü für Anmerkungen

Tasten:

↓/↑	Zwischen den Einstellungen von Pause und Anmerkung wählen.	
\leftarrow / \rightarrow	Die Anmerkung [(keine Anmerkung), Nr. 1 ÷ Nr. 50] wählen.	
F1	Zum Einstellungsmenü für Anmerkungen der ausgewählten Anmerkungsnummer gehen.	
TEST	T Den aktuellen Auswahl bestätigen, und zum Hauptmenü der Automatiksequenz rückkehren.	
ESC	Zum Hauptmenü der Automatiksequenz ohne Änderungen rückkehren.	

Im Einstellungsmenü für Anmerkungen können die Anmerkungen eingestellt werden.

Max. Anmerkungslänge: 250 Zeichen (inklusiv Freiraum und neue Zeilenzeichen)

Abb. 4.19: Einstellungsmenü für Anmerkungen

Tasten:

Betonte Tasten	Ausgewähltes Symbol oder Aktivität.		
$\leftarrow / \rightarrow / \checkmark / \land$	Symbols oder Aktivität whlen.		
TEST	EST Das ausgewählte Symbol eintragen und die ausgewählte Aktivität durchführen.		
F1	Das letzteingetragene Symbol in der Namenzeile löschen.		
F2	Bestätigung der Anmerkung und zurückgehen.		
ESC	Die Anmerkung löschen (sofort nachdem das Einstellungsmenü eingetragen wurde). Zurück zum Hauptmenü der Automatiksequenz ohne Änderungen gehen.		

Hinweis:

 Es ist nicht möglich, die an geschlossene Automatiksequenzen angewandte Anmerkungen zu überschreiben. Speichern der Anmerkung unter den angewandten Speicherplatz.

Figure 4.20 Speichern der Anmerkung

Tasten:

\leftarrow / \rightarrow	Anmerkung-Speicherplatz wählen.
TEST	Bestätigung der Speicherung und zurückgehen.
ESC	Zurück zum Einstellungsmenü für Anmerkungen

4.3.8 Vorbereitung einer Automatiksequenz

Das Instrument unterstützt bis zu 50 Automatiksequenzen, die jede aus bis zu 6 Schritten besteht. Es ist nicht notwendig, dass alle Schritte benutzt sind. Die Automatiksequenz kann folgender Weise vorbereitet werden:

- Durch Speicherung der bestehenden Automatiksequenz unter einer neuen Automatiksequenznummer (siehe *4.3.5*),
- Durch Änderung der bestehenden Automatiksequenz und dessen Speicherung mit dem selben Namen und unter der selben Automatiksequenznummer (nicht möglich für eine geschlossene Automatiksequenz),
- Durch Errichtung einer neuen Automatiksequenz.

So wird eine neue Automatiksequenz errichtet

- Wählen Sie im Hauptmenü (siehe 4.1) Automatiksequenz.
- Drücken Sie die **TEST-Taste**.
- □ Wählen Sie die **Automatiksequenznummer** (siehe 4.3.1).
- Wiederholen Sie, solange nicht beendet (maximal 6 Schritte):
 - Wählen Sie den Automatiksequenzschritt (siehe 4.3.2).
 - Wählen Sie die Automatiksequenz-Funktion (siehe 4.3.2).
 - Wählen Sie die Automatiksequenz-Pr
 üfparameter der Funktion (siehe 4.3.3).
 - Stellen- Sie das Pause-Zeichen III falls notwendig ein und wählen oder herstellen Sie neue Anmerkung (siehe *4.3.7*).
- Nennen (oder umbenennen) Sie die Automatiksequenz und tragen Sie deren Beschreibung ein (siehe 4.3.4).
- □ Speichern Sie die vorbereitete Automatiksequenz (siehe 4.3.5).

Abb. 4.20: Leere Automatiksequenz

Beispiel einer Automatiksequenzerrichtung

Eine Steckdose in Hausinstallation, die mit Sicherung (Typ gG, In = 6 A, td = 5 s) und RCD (Typ AC, $I_{\Delta N}$ = 30 mA) geschützt ist, soll geprüft werden. Die folgenden Messungen müssen durchgeführt werden:

- Niederohmmessung zwischen PE Kontakt an der Steckdose und
 - Hauptpotentialausgleicher. (R \leq 0.1 Ω),
- □ Isolationswiderstand zwischen L N, L PE und N PE (U = 500 V, R ≥ 1 MΩ),
- □ Spannungen an der Dose,
- Leitungsimpedanz,
- □ RCD Auslösezeit bei Nennstrom (1 x $I_{\Delta N}$).,
- **RCD** Auslösezeit beim 5-fachen Nennstrom (5 x $I_{\Delta N}$).

Der Name der Prüfsequenz Nummer 10 ist "Dose. 6A / 30mA(AC)". Beschreibung der Prüfungssequenz lautet: "Überprüfung der Steckdose, die mit einer Sicherung und RCD geschützt wird".

Für die Messung sollen die folgenden Bedingungen angewandt werden:

- Niederohmmessung und Isolationswiderstandsmessung müssen an nicht unter Spannung stehenden Steckdosen durchgeführt werden;
- Niederohmmessung und Isolationswiderstandsprüfung sollten mit Schuko-Kabel oder Taster-Stecker (siehe Abb. 5.2 und 5.3) durchgeführt werden;
- Andere Pr
 üfungen m
 üssen an unter Spannung stehenden Pr
 üfsteckdosen mit dem Schuko-Kabel oder Taster-Stecker durchgef
 ührt werden (siehe Abb. 5.12, 5.22 und 5.26).

Funktion /Tasten	Abschnitt- Referenz	Anmerkung
Autosequence, TEST	4.1	Automatiksequenzfunktion im Hauptmenü wählen.
\leftarrow / \rightarrow	4.3.1	Prüfsequenz Nummer 10 wählen.
F1	4.3.4	Namen und Beschreibungs-Einstellungsmenüs auswählen.
F1	4.3.4	Namen-Einstellungsmenü (2. Ebene) auswählen.
Sock. 6A / 30mA(AC)	4.3.4	Namen der Automatiksequenz-Sequenz annehmen.
F2	4.3.4	Namen bestätigen und Einstellungsmenü (2. Ebene) verlassen.

Beispiel:

\rightarrow	4.3.4	Beschreibungs-Einstellungsmenü auswählen.
F1	434	Beschreibungs-Einstellungsmenü (2 Ebene)
		auswählen
Überprüfung der	434	Beschreibung der Automatiksequenz-Sequenz
Steckdose die mit	1.0.1	annehmen
einer Sicherung und		
RCD geschützt wird		
F2		Beschreibung bestätigen und Einstellungsmenü
		(2 Fhene) verlassen
TEST	434	Zum Hauptmenü zurückgehen
<u>ч</u>	43	Sequenzeinstellungsfeld wählen
\leftarrow	432	Funktion DURCHGANG wählen
TAR	4.3.2	Prüfnarameter-Menü wählen
TEST P200mA	4.5.2	
Limit ON	5.2	Prüfparamotor für Niederehmmessung einstellen
	5.2	
	132	Prüfparamotor Monü vorlasson
	4.3.2	Dio DALISE oinstellon
	4.3.2	Die FAUSE einstellen:
	4.3.7	
	4.3.7	Anwierrung Wr. 1 wöhlen
	4.3.7	Anmerkung: Nr. 1 wanien.
FI	4.3.7	zum Einstenungsmenu für Anmerkungen
Vereeroupgepeta		genen.
	4.3.7	Anmerkung eintragen.
	427	Anmorkung hostötigen
ТЕСТ	4.3.7	Anmerkung upter Nr. 1 engishern
	4.3.4	Anmerkung unter Nr. 1 Speichem.
	4.3.7	Anmerkung. Nr. 2 Wanten.
	4.3.7	zum Einstenungsmenu für Anmerkungen
Varaargunganatz		genen.
Koino Laston	4.3.7	Die Anmerkung eintragen.
	137	Anmerkung bestätigen
TEST	4.3.7	Anmerkung unter Nr. 2 speichern
→	437	ANMERKI ING: Nr. 3 wählen
F 1	437	Zum Finstellungsmenü für Anmerkungen
	4.0.7	dehen
Versorgungsnetz		
FINI	4.3.7	Anmerkung eintragen.
F2	4.37	Anmerkung bestätigen
TEST	4.3.4	Anmerkung unter Nr. 3 speichern
\rightarrow	4.3.7	ANMERKUNG: Nr 4 wählen
F1	437	Zum Finstellungsmenü für Anmerkungen
• •	1.0.7	gehen
RCD nach Auslosen		
zurückschalten	4.3.7	Zur Anmerkung gehen.
F2	4.3.7	Anmerkung bestätigen.
TEST	131	Anmerkung unter Nr. 1 speichern
--	-------	---
$(3 \mathbf{v})$	4.3.4	ANMERKING: Nr. 1 wählen
TEST	4.3.7	Die ausgewählte Pause und deren Anmerkung
	7.5.7	bestätigen.
\checkmark	4.7	Nächster Schritt.
\leftarrow / \rightarrow	4.7	Funktion ISOLATION wählen.
ТАВ	432	Prüfparameter-Menü wählen
TEST ALL	11012	
UISO 500 V		
	5.1	Prüfparameter für Isolationswiderstand einstellen.
Limit 1MO		
	432	Prüfparameter-Menü verlassen
F1	432	PALISE einstellen
	437	Die PALISE einstellen: FIN
J J	437	
\rightarrow (2 x)	437	Anmerkung: Nr. 2 wählen
TEST	137	Die ausgewählte Pause und deren Anmerkung
1231	4.3.7	bestätigen
L	13	Nächster Schritt
	4.3	Funktion SPANNUNG wählen
	4.3.2	PALISE einstellen
	4.3.2	Dia DALISE ainstellan: ON
	4.3.7	
\mathbf{V}	4.3.7	Anwierrung wielen.
7 (3 X)	4.3.7	Anmerkung. Nr. 5 wanten.
1651	4.3.7	bestätigen.
\checkmark	4.3	Nächster Schritt.
\leftarrow / \rightarrow	4.3.2	Funktion Leitungsimpedanz wählen.
ТАВ	4.3.2	Prüfparameter-Menü wählen.
FUSE type gG FUSE I 6A FUSE T 5s	5.5	Prüfparameter für Leitungsimpedanzprüfung einstellen.
ТАВ	4.3.2	Prüfparameter-Menü verlassen.
\checkmark	4.3	Nächster Schritt.
\leftarrow / \rightarrow	4.3.2	Funktion RCD wählen.
ТАВ	4.3.2	Prüfparameter-Menü wählen.
TEST I		
Auslösezeit		Prüfparameter für Fehlerstrom-Schutzeinrichtung
Idn 30mA	5.0	Auslösezeitprüfung (das Ergebnis dieser Prüfung
type ~ G	5.3	ist auch die Berührungsspannung bei I_A
MUL x1		Auslösezeit) einstellen.
Ulim 50V		
TAB	4.3.2	Prüfparameter-Menü verlassen.
\checkmark	4.3	Nächster Schritt.
F1	4.3.2	PAUSE einstellen.
\leftarrow / \rightarrow	4.3.7	Die PAUSE einstellen: ON.
\checkmark	4.3.7	ANMERKUNG wählen.
\rightarrow (4 x)	4.3.7	Anmerkung: Nr. 4 wählen.

TEST	4.3.7	Die ausgewählte Pause und deren Anmerkung auswählen.
\leftarrow / \rightarrow	4.3.2	Funktion RCD wählen.
ТАВ	4.3.2	Prüfparameter-Menü wählen.
TEST Auslösezeit t Idn 30mA type ←G MUL x5 Ulim 50V	5.3	Prüfparameter für Fehlerstrom-Schutzeinrichtung Auslösezeitprüfung bei 51 _{4N} .
ТАВ	4.3.2	Prüfparameter-Menü verlassen.
↑ (6 x)	4.3	Sequenzeinstellungsfeld wählen.
F2	4.3.5	Speicherung der vorbereiteten Prüfsequenz.
TEST	4.3.5	Speicherung bestätigen.

AUTO SEQUEN	ICE 08:38
#5 Sock. 6A / 30mA(AC)	
CONTINUITY INSULATION VOLTAGE Z-LINE RCD RCD	
	2 SAVE settings

Abb. 4.21: Automatiksequenzdisplay des oberen Beispiels

Der Automatiksequenzname kann am meisten aus 20 Zeichen bestehen.

4.4 Sonstiges

A⊟ T ⊲

Menü können verschiedene Instrumentsoptionen eingestellt werden.

Optionen:

Im

- □ Sprache wählen,
- □ Versorgungsnetz-System wählen,
- Gespeicherte Ergebnisse abrufen und löschen,
- Datum und Zeit einstellen,
- □ Schnittstelle auswählen,
- Das Instrument auf die ursprünglichen Werte einstellen,
- Leitungssucherfunktion einschalten.
- Den Bediener auswählen

Tasten:

Abb. 4.22: Optionen im Sonstiges-Menü

$\psi/ \wedge / \leftarrow / \rightarrow$	Option wählen.
TEST	Ausgewählte Option annehmen.
ESC	Zum Hauptmenü zurückgehen.

4.4.1 Sprachauswahl

Das Instrument unterstützt verschiedene Sprachen.

Abb. 4.23: Sprachauswahl

Tasten:

↓/↑	Sprache wählen.
TEST	Die ausgewählte Sprache bestätigen und zum Einstellungsmenü zurückgehen.
ESC	Zum Einstellungsmenü ohne Änderungen zurückgehen.

4.4.2 Versorgungsnetz-System, Isc-Faktor, RCD-Standard

Im Versorgungsnetzmenü können die folgenden Parameter ausgewählt werden:

Versorgungsnetz- System	TT,TN,IT,RLV(2x55V), RLV(3x63V).
lsc- Skalierungsfaktor	Korrektionsfaktor für Fehlerstromberechnung (Isc).
RDC Prüfungs- Norme	RCD-Normativreferenz.

Abb. 4.24 Systemparameter

Tasten:

ψ/\uparrow	Option wählen.
\leftarrow / \rightarrow	Die Option ändern.
TEST	Die ausgewählte Option bestätigen.
ESC	Mit der neuen Einstellung zum Einstellungsmenü zurückkehren.

Versorgungsnetz-System

Die folgenden Versorgungsnetz -Systeme werden unterstützt:

- TT / TN (geerdete Systeme),
- □ IT (gegen Erde isoliertes System),
- □ 110V Netz mit verminderter Spannung (2×55 V)
- □ 110V Netz mit verminderter Spannung (3×63 V)

TN, TT und IT Systeme sind im EN 60364-1 Standard bestimmt. Die 110 V Netze mit verminderter Spannung sind im BS 7671 bestimmt.

Sehen Sie Anhang D für besondere Merkmale der IT-System- Messungen und für Merkmale des Instruments.

Sehen Sie *Anhang E* für besondere Merkmale des 110 V Netzen mit verminderter Spannung und für Merkmale des Instruments.

Isc-Faktor

Der Isc- Kurzschlussstrom im Versorgungssystem ist wichtig, um die Sicherungen und Schutzeinrichtungen auszuwählen oder nachprüfen.

Der ursprüngliche ksc- Wert beträgt 1.00. Ändern Sie den Wert gemäß den Vorschriften Ihres Landes.

Einstellungsbereich von ksc beträgt 0.20 ÷ 3.00.

RCD-Normativreferenzen

Die maximalen RCD- Auslösezeiten unterscheiden sich in verschiedenen Standards. Die in einzelnen Standards bestimmten Auslösezeiten werden unten aufgelistet.

Auslösezeiten nach EN 61008 / EN 61009:

	1∕₂×I _{∆N} *)	$I_{\Delta N}$	$2 \times I_{\Delta N}$	$5 \times I_{\Delta N}$
Allgemeine				
RCDs	t _∆ > 300 ms	t _∆ < 300 ms	t _∆ < 150 ms	t _∆ < 40 ms
(unverzögert)				
Selektive RCDs	t > 500 mc	130 ms < t < 500 ms	60 mc < t < 200 mc	$50 \text{ ms} \neq t \neq 150 \text{ ms}$
(verzögert)	$t_{\Delta} > 500 \text{ ms}$	$130 \text{ ms} < t_{\Delta} < 500 \text{ ms}$	$100 \text{ ms} < t_{\Delta} < 200 \text{ ms}$	$50 \text{ ms} < t_{\Delta} < 150 \text{ ms}$

Auslösezeiten nach EN 60364-4-41:

	¹ / ₂ ×Ι _{ΔΝ} ^{*)}	ΔN	$2 \times I_{\Delta N}$	5×I _{∆N}
Allgemeine				
RCDs	t _∆ > 999 ms	t _∆ < 999 ms	t _∆ < 150 ms	t_{Δ} < 40 ms
(unverzögert)				
Selektive RCDs	t > 000 mc	130 ms < t < 000 ms	60 ms < t < 200 ms	50 mc < t < 150 mc
(verzögert)	ı∆ > 999 ms	130 ms < t_{Δ} < 333 ms	$110 \text{ ms} < t_{\Delta} < 200 \text{ ms}$	$30 \text{ ms} < t_{\Delta} < 100 \text{ ms}$

Auslösezeiten nach BS 7671:

	$\frac{1}{2} \times I_{\Delta N}^{*)}$	ΔN	$2 \times I_{\Delta N}$	5×I _{∆N}
Allgemeine RCDs (unverzögert)	t _∆ > 1999 ms	t _∆ < 300 ms	t_{Δ} < 150 ms	t_{Δ} < 40 ms
Selektive RCDs (verzögert)	t_{Δ} > 1999 ms	130 ms < t_{Δ} < 500 ms	60 ms < t_{Δ} < 200 ms	50 ms < t_{Δ} < 150 ms

4.4.3 Abrufen und löschen von Messergebnisse

In diesem Menü können die gespeicherten Daten abgerufen, angeschaut und gelöscht werden. Weitere Informationen erhalten Sie im Abschnitt 6 Handlungen mit Angaben.

Abb. 4.25: Speicheroptionen

Tasten:

\leftarrow / \rightarrow	Option wählen.
ESC	Das Menü verlassen.
TEST	Ausgewählte Option annehmen.

4.4.4 Datum und Zeit

In diesem Menü können Datum und Zeit eingestellt werden.

Abb. 4.26: Datum und Zeit einstellen

Tasten:

\rightarrow	Das zu ändernde Feld wählen.
<u>↑</u> / ↓	Ausgewähltes Feld modifizieren.
ESC	Datum- und Zeiteinstellungen ohne Änderungen verlassen.
TEST	Die neue Einstellung bestätigen und das Menü verlassen.

4.4.5 Wiederherstellung der ursprünglichen Einstellungen

Einstellungen des Instruments und Messungsparameter/Grenzen werden in diesem Menü auf die ursprünglichen (Fabrik) Werte eingestellt.

Abb. 4.27: Ursprüngliche Einstellungen

Tasten:

TEST	Ursprüngliche Einstellungen zurückerstatten.	
ESC	Das Menü ohne Änderungen verlassen.	
F2	Andere Einstellungsmenüs öffnen.	

Achtung:

Manuelle angefertigte Einstellungen werden verloren, wenn diese Option genutzt wird!

Die ursprünglichen Einstellungen sind unten aufgelistet:

Instrumentseinstellung	Ursprünglicher Wert
Kontrast	Werkeinstellung
ksc- Faktor	1.00
Versorgungsnetz-System	TN / TT
RCD- Referenznormativ	EN 61008 / EN 61009
Schnittstelle	RS 232
Sprache	Englisch

Funktion Unterfunktion	Parameter / Grenzwert
DURCHGANG	R 200 mA
Niederohm	Oberer Grenzwert: AUS
Durchgang	Oberer Grenzwert: AUS
ISOLATION	Nennprüfspannung: 500 V
	Unterer Grenzwert: AUS
	Spannung am Ausgang: LN
LEITUNGSIMPEDANZ	Sicherungstyp: keiner ausgewählt
ΔU - Spannungsfall	Grenzwert: 4,0 %
	Z _{ref} : 0,00 Ω
FEHLERSCHLEIFENIMPEDANZ	Schutz: Sicherung
	Sicherungstyp: keiner ausgewählt

Berührungsspann. – RCD Uc Auslösezeit – RCD t Auslösestrom – RCD III Autotest – RCD AUTO	RCD t	
	Nenndifferenzstrom: I _{∆N} =30 mA	
	Anfangspolarität des Prüfstroms: Grenzberührungsspannung: 50 V Strommultiplikator: ×1	
ERDUNG		
3-Leiter Prüfung	Grenzwert: AUS	
Prüfung mit einer Stromzange	Grenzwert: AUS	
Prüfung mit zwei Stromzangen	Grenzwert: AUS	
Spezifischer Erdwiderstand	Einheit : Meter	
TRMS-Strom	Grenzwert: AUS	
Sensor - Beleuchtung	Grenzwert: AUS	
2 Ω Leitungs-/Fehlerschleifen-	mΩ L-N	
Impedanz Adapter	Sicherungstyp: keiner ausgewählt	
IMD-Prüfung	Grenzwert: AUS	
ISFL	Grenzwert: AUS	
Überspannungsschutzeinrichtungen	Unterer Grenzwer: 300 V	
	Oberer Grenzwert: 400 V	

Weitere Einstellungen

	Zum Menü gehen:
F2	 um die geschützten Automatiksequenzen und Anmerkungen vorübergehend (solange das Instrument eingeschaltet ist)
	 aufzumachen. um die Einheit f ür die Erdungswiderstandmessung einzustellen.

Weitere Einstellungen-Menü.

Abb. 4.28: Das Menü ,Weitere Einstellungen'

Tasten:

↑/ ↓	Einstellung wählen.
TEST	Ausgewählte Einstellung öffnen.
ESC	Das Menü ohne Änderungen verlassen.

Aufmachen des Shutzes für Sequenzen/ Anmerkungen

Der Schutz für alle ursprüngliche Automatikprüfung-Sequenzen und dazugehörende Anmerkungen wird vorübergehend aufgemacht. (Schlüsselzeichen wird gelöscht).

Other settings	
Unlock default autotests & comments.	
Units of measurement)
(] Unlock)	

Figure 4.29: Other settings dialogue

TEST	Die geschützten Sequenzen/Anmerkungen werden aufgemacht.
ESC	Das Menü ohne Änderungen verlassen.

Einstellung der Einheit

Die Einheit für Erdungswiderstand wird eingestellt.

Figure 4.30: Other settings dialogue

\leftarrow / \rightarrow	Einheit (Feet oder Meter) einstellen.		
TEST	Eingestellte Einheit (Feets oder Meter) bestätigen.		
ESC	Das Menü ohne Änderungen verlassen.		

4.4.6 Auswahl der Schnittstelle

In diesem Menü kann die entsprechende Schnittstelle (RS232 oder USB) ausgewählt werden.

Abb. 4.31: Auswahl der Schnittestelle

Tasten:

\wedge / \checkmark	Schnittstelle wählen.
TEST	Ausgewählte Schnittstelle bestätigen.
ESC	Menü ohne Änderungen verlassen.

Hinweis:

• Nur eine Schnittstelle kann gleichzeitig aktiv sein.

4.4.7 LOCATOR - Leitungssucherfunktion

Diese Funktion ermöglicht Verfolgung von Leitungen und Suchen von Sicherungen.

Tasten:

TEST	Leitungssucherfunktion ein/ ausschalten.
ESC	SONSTIGES-Menü verlassen.

Weitere Informationen über diese Funktion erhalten Sie im Abschnitt 5.9 *Leitungssucherfunktion.*

4.4.8 Bediener

Im diesem Menü kann der Bediener des Instruments registriert werden. Der ausgewählte Name des Bedieners wird unten am LCD angezeigt, während das Instrument eingeschaltet wird. Der Name wird auch zu gespeicherten Ergebnissen zugefügt. Es können bis zu 5 Bedienernamen bestimmt werden.

	Operator	
	User1 JANE User3 User4 User5	
SET)		F1 Edit

Abb. 4.32: Bediener-Menü

Tasten:

↑/ ↓	Bediener wählen.	
TEST	Bediener bestätigen.	
ESC	Zum Sonstiges- Menü ohne Änderungen gehen.	
F1	Zum Einstellungsmenü für den Namen des Bedieners gehen.	

Der Bedienername kann eingetragen oder geändert werden.

Der Bedienername kann am meisten aus 15 Zeichen bestehen.

Abb. 4.33: Einstellungsmenü für den Namen des Bedieners

Tasten:

Betonte Tasten	Ausgewähltes Symbol oder Aktivität.		
$\leftarrow / \rightarrow / \checkmark / \land$	Symbols oder Aktivität wählen.		
TEST	Das ausgewählte Symbol annehmen oder die Aktivität durchführen.		
F1	Das letzteingetragene Symbol in der Namenzeile löschen.		
F2	Bestätigen und zum Betriebshauptmenü zurückgehen.		
ESC	Den Bediener löschen (sofort nachdem der Editor eingetragen wurde). Zurück zum Betriebshauptmenü ohne Änderungen gehen.		

5 Messungen

5.1 Isolationswiderstand

Isolationswiderstandsmessung wird durchgeführt, um die Sicherheit gegen elektrischen Schlag durch Isolation zu gewährleisten. Die Forderungen für Isolations-Prüfgeräte sind im EN 61557-2 Standard bestimmt. Typische Anwendungen sind:

- Isolationswiderstand zwischen Leitern der Anlage
- □ Isolationswiderstand nicht leitender Bereiche (Wände und Fußböden)
- Widerstand von antistatischen Fußböden

Informationen über die Funktion der Tasten erhalten Sie im Abschnitt *4.2 Einzelprüfung*.

Abb. 5.1: Isolationswiderstand

Prüfparameter für Isolationswiderstandsmessung

TEST	Prüfkonfiguration [L-N, L-PE, N-PE, "L-PE,N-PE', "L-N, L-PE", ALL]	
Uiso	Prüfspannung [50 V, 100 V, 250 V, 500 V, 1000 V]	
Limit	Minimaler Isolationswiderstand [OFF, 0.01 M $\Omega \div$ 200 M Ω , ("L-PE,N-PE", "L-N, L-PE", ALLE : 20 M Ω)]	

Anschlusspläne

Abb. 5.2: Anschluss des Universalprüfkabels für die Messung des allgemeinen Isolationswiderstands (TEST: L-PE)

Abb. 5.3: Anschluss des Taster-Steckers und Universalprüfkabels für die Messung des Isolationswiderstands (TEST: "L-PE,N-PE", "L-N, L-PE", ALL)

So wird der Isolationswiderstand gemessen

- □ Wählen Sie die ISOLATION- Funktion.
- □ Stellen Sie **Prüfparameter** ein.
- Ermöglichen und stellen Sie den Grenzwert ein (optional).
- Schalten Sie die zu pr
 üfende Installation von dem Netz ab
- Schließen Sie das Pr
 üfkabel an das Instrument und an die zu pr
 üfende Anlage an (siehe Abb. 5.2 und 5.3).
- Drücken Sie die TEST-Taste zur Messung (drücken Sie weiter zur kontinuierlichen Messung).
- Nach der durchgeführten Messung, warten Sie bis die zu pr
 üfende Anlage entladen wird.
- Speichern Sie das Ergebnis (optional).

Abb. 5.4: Beispiel eines Ergebnisses der Messungen des Isolationswiderstands

Angezeigte Ergebnisse: RInIsolationswiderstand zwischen L (+) und N (-). RIpeIsolationswiderstand zwischen L (+) und PE (-). RnpeIsolationswiderstand zwischen N (+) und PE (-). UmWert der Prüfspannung(en)

Hinweis:

 Befolgen Sie die entsprechende Pr
üfschaltung, wie im Spannungs- / Ausgangsklemmenw
ächter angezeigt, wenn die bestimmte Isolationspr
üfung ausgew
ählt wird.

5.2 Durchgangsprüfungen

Die Durchgangsprüfungen werden durchgeführt, um sicherzustellen, dass die Schutzmassnahmen gegen elektrischen Schlag durch Schutz-, Erdungs- und Potentialausgleichleitern wirksam sind. Vier Unterfunktionen stehen zur Verfügung:

- Niederohmmessung nach EN 61557-4 (zwischen N-Terminal und PE -Terminal) Prüfstrom >200 mA),
- Niederohmmessung nach EN 61557-4 (zwischen L-Terminal und PE -Terminal) Prüfstrom >200 mA),
- Durchgangswiderstandsmessung mit niedrigem Pr
 üfstrom (ca 7 mA, zwischen N-Terminal und PE -Terminal),
- Durchgangswiderstandsmessung mit niedrigem Pr
 üfstrom (ca 7 mA, zwischen L-Terminal und PE -Terminal)

Informationen über die Funktion der Tasten erhalten Sie im Abschnitt *4.2 Einzelprüfung*.

Abb. 5.5: Durchgangsprüfung

Prüfparameter für Widerstandsmessung

TEST	Widerstandsmessung Unterfunktion [R200mA NPE, R7mA NPE, R200mA LPE, R7mA LPE]
Limit	Maximaler Widerstand [OFF, 0.1 $\Omega \div 20.0 \Omega$]

5.2.1 Niederohmmessung

Die Messung wird mit automatischer Umpolung der Prüfspannung durchgeführt.

Anschlussplan

Abb. 5.6: Anschluss des Universalkabels und der optionalen Verlängerungsleitung

So wird die Niederohm- Prüfung durchgeführt

- Wählen Sie die DURCHGANG- Funktion.
- □ Stellen Sie die entsprechende Unterfunktion R200mA ein (L-PE oder N-PE).
- Ermöglichen und stellen Sie den Grenzwert ein (optional).
- Schließen Sie das Prüfkabel an das Instrument.
- □ Kompensieren Sie den Widerstand der Prüfleitungen (falls notwendig).
- Schließen Sie die Pr
 üfleitungen an die zu pr
 üfende PE-Leitung an (siehe Abb. 5.6).
- Drücken Sie die **TEST**-Taste zur Messung.
- Speichern Sie das Ergebnis (optional).

Abb. 5.7: Beispiel des Niederohm-Ergebnisses

Angezeigte Ergebnisse:

R.....R200mA-Hauptwiderstand (Durchschnitt von Resultaten R+ und R-), R+R200mA Widerstand mit Positivspannung am N-Terminal,

R-.....R200mA Widerstand mit Positivspannung am PE-Terminal.

5.2.2 Durchgangswiderstandsmessung

Allgemein dient diese Funktion als Standard-Ω-Meter mit niedrigem Prüfstrom. Es gibt keine Umpolung während der Messung. Die Funktion ist auch zur Messung des Durchgangs von induktiven Bestandteilen geeignet.

Anschlussplan

Abb. 5.8: Anschluss des Universalprüfkabels

So wird der Durchgangswiderstand gemessen

- Wählen Sie die DURCHGANG -Funktion.
- Stellen Sie die entsprechende Unterfunktion **R 7mA** ein (L-PE oder N-PE).
- Ermöglichen und stellen Sie den **Grenzwert** ein (optional).
- □ Schließen Sie das Prüfkabel an das Instrument.
- □ Kompensieren Sie den Widerstand der Prüfleitungen (falls notwendig).
- Schließen Sie die Prüfleitungen an die zu prüfende Anlage an (siehe Abb. 5.8).
- Drücken Sie die TEST-Taste. Die Durchgangsprüfung wird kontinuierlich durchgeführt. Falls das Messergebnis unter dem eingestellten Grenzwert liegt, wird da akkustisch signalisiert.
- Drücken Sie die **TEST**-Taste um die Messung zu stoppen.
- Speichern Sie das Ergebnis (optional).

Abb. 5.9: Beispiel der Durchgangswiderstandsmessung

Angezeigtes Ergebnis: R.....Widerstand.

5.2.3 Kompensierung des Widerstands der Prüfleitungen

Die Kompensierung ist erforderlich, um den Einfluss der Prüfspitzen, Prüfleitungen und des internen Instrumentswiderstands auszuschließen. Die Kompensierung ist von großer Bedeutung, um das richtiges Ergebnis zu erhalten. Der Kompensierungsstatus ([]] / []) wird im Meldungsfeld angezeigt.

Key:	
F1	Zugang zum Menü für Kompensierung des Widerstands der Prüfleitungen

Informationen über die aktiven Tasten erhalten Sie im Abschnitt 4.2 Einzelprüfung.

Abb. 5.10: Kompensierung des Widerstands der Prüfleitungen Tasten:

TEST	Kompensierung wird durchgeführt.
ψ / \uparrow	Einstellung der Funktion zur Kompensierung

Das Prüfgerät kompensiert den Widerstand in folgenden Prüfungen:

Durchgang NPEKurzgeschlossene PrüfspitzenGleichzeitige Kompensierung für 7 mA and 200Kurzgeschlossene PrüfspitzenM Messungen.N und PE.Gleichzeitige Kompensierung für 7 mA and 200Kurzgeschlossene PrüfspitzenM Messungen.Kurzgeschlossene PrüfspitzenM Messungen.Kurzgeschlossene Prüfspitzen

Hinweise:

Beide Kompensierungen sind untereinander unabhängig !

Anschlussplan zur Kompensierung des Widerstands der Prüfleitungen

Abb. 5.11: Kurzgeschlossene Prüfspitzen – Beispiel Durchgang NPE

So wird der Prüfspitzenwiderstand kompensiert

- Wählen Sie (irgendeine) DURCHGANG -Funktion.
- Schließen Sie das Pr
 üfkabel an das Instrument an und schließen Sie die NPE (siehe Abb. 5.10) oder LPE Pr
 üfleitungen kurz.
- Drücken Sie die F1-Taste um in das Kompensierungs-Menü zu gelangen.
- □ Wählen Sie die entschprechende Kompensierungsfunktion.
- Drücken Sie die **TEST**-Taste um die Kompensierung anzuhnemen.
- □ Nach der durchgeführten Kompensierung drücken Sie ESC.

Hinweis:

Der Grenzwert zur Kompensierung des Prüfspitzenwiderstands beträgt 20 Ω .

5.3 Prüfung von Fehlerstrom-Schutzeinrichtungen (RCD)

Bei der Prüfung von Fehlerstrom-Schutzeinrichtungen können folgende Unterfunktionen durchgeführt werden:

- Berührungsspannungsmessung
- Auslösezeitmessung
- Auslösestrommessung
- Messung des Fehlerschleifenwiderstands
- □ Fehlerstrom-Automatikprüfung

Die Messungen sind im EN 61557-6 Standard bestimmt.

Informationen über die Funktionen der Tasten erhalten Sie im Abschnitt *4.2 Einzelprüfung*.

Abb. 5.12: RCD-Prüfung

Prüfparameter für RCD-Prüfung und Messung

PRÜFUNG	RCD Unterfunktion [Auslösezeit t, Uc, AUTO, IAuslösestrom].
ldn	Nenn-Auslösedifferenzstrom $I_{\Delta N}$ [10 mA, 30 mA, 100 mA, 300 mA, 500 mA, 1000 mA].
Тур	RCD-Typ [G, S], Prüfungsstrom und Anfangspolarität [八, ヅ, 广, ヅ,
MUL	Multiplikator des Nenn-Auslösedifferenzstroms [½, 1, 2, 5].
Ulim	Berührungsspannungsgrenze [25 V, 50 V].

Das Instrument dient zur Prüfung von **G**enerellen (unverzögerten) und Selektiven (verzögerten) Fehlerstrom-Schutzeinrichtungen, die geeignet sind für:

- □ Fehlerwechselstrom (Typ AC, gekennzeichnet mit dem Symbol →)
- □ Pulsierenden Fehlergleichstrom (Typ A, gekennzeichnet mit dem Symbol ~-)
- □ Fehlergleichstrom (Typ B, gekennzeichnet mit dem Symbol ----)

Der Prüfstrom kann mit der positiven Halbwelle bei 0° oder mit der negativen Halbwelle bei 180° gestartet werden.

Selektive Fehlerstrom-Schutzeinrichtungen zeigen eine verzögerte Ansprechcharakteristik. Die Auslöseleistung wird aufgrund der Vorladung während der Berührungsspannungsmessung beeinflusst. Um die Vorladung zu eliminieren, wird eine Verzögerungszeit von 30 s vor Durchführung der Auslöseprüfung eingefügt. Anschlussplan für die RCD-Prüfung

Abb. 5.13: Anschluss des Taster-Steckers und Universalprüfkabels

5.3.1 Berührungsspannung (RCD Uc)

Leck und Fehlerströme in die PE-Klemmen verursachen einen Spannungsfall auf dem Erdungswiderstand, d.h. einen Spannungsunterschied zwischen mit PE verbundenen Elementen und Erde. Dieser Spannungsunterschied wird Berührungsspannung genannt. Die Berührungsspannung soll immer niedriger als die übliche Sicherheitsgrenzspannung liegen. Um die RCD-Auslösung während der Prüfung zu vermeiden, wird die Berührungsspannung mit einem Strom gemessen, der niedriger als ½ I_{ΔN} ist.

So wird die Berührungsspannung gemessen

- Wählen Sie die RCD-Funktion.
- □ Stellen Sie die Unterfunktion **Uc** ein.
- □ Stellen Sie **Prüfparameter** (falls notwendig) ein.
- Schließen Sie das Prüfkabel an das Instrument.
- Schließen Sie die Prüfleitungen an die zu prüfende Anlage an (siehe Abb. 5.12).
- Drücken Sie die **TEST**-Taste.
- □ Speichern Sie das Ergebnis (optional).

Die angezeigte Berührungsspannung bezieht sich auf den Nenndifferenzstrom der Fehlerstrom-Schutzeinrichtung und wird aus Sicherheitsgründen mit einem Faktor multipliziert. Tabelle 5.1 beschreibt die Berechnung der Berührungsspannung. Der übliche Faktor von 1.05 wird angewandt, um die eventuelle negative Toleranz des Messergebnisses zu vermeiden.

RCD	-Тур	Berührungsspannung Uc	Nenndifferenzstrom $I_{\Delta N}$
AC	G	1.05×I _{∆N}	
AC	S	$2 \times 1.05 \times I_{\Delta N}$	
А	G	1.4×1.05×I _{∆N}	> 20 m A
А	S	$2 \times 1.4 \times 1.05 \times I_{\Delta N}$	≥ 30 MA
А	G	$2 \times 1.05 \times I_{\Delta N}$	< 30 mA
А	S	$2 \times 2 \times 1.05 \times I_{\Delta N}$	
В	G	2×1.05×I∆N	
В	S	2×2×1.05×I∆N	

Tabelle 5.14: Beziehung zwischen Uc und $I_{\Delta N}$

Fehlerschleifenwiderstand wird auf der Grundlage von Uc- Ergebnis (ohne zusätzlichen proportionalen Faktoren) wie folgt berechnet: $R_L = \frac{U_C}{L}$.

Abb. 5.15: Beispiel eines Ergebnisses der Berührungsspannungsmessung

Angezeigte Ergebnisse: Uc......Berührungsspannung. RI.....Fehlerschleifenwiderstand.

5.3.2 Auslösezeit (RCD t)

Die Messung der Auslösezeit wird zur Überprüfung der Wirksamkeit der Fehlerstrom-Schutzeinrichtung benutzt. Dies wird durch eine Prüfung erreicht, die einen entsprechenden Fehlerstrom simuliert.

So wird die Auslösezeit gemessen

- Wählen Sie die RCD-Funktion.
- Stellen Sie Unterfunktion t ein.
- Stellen Sie die **Prüfparameter** (falls notwendig).
- Schließen Sie die Prüfleitungen an die zu prüfende Anlage an (siehe Abb. 5.12).
- Drücken Sie die **TEST**-Taste.
- □ Speichern Sie das Ergebnis (optional).

Abb. 5.16: Beispiel eines Ergebnisses der Auslösezeitmessung

Angezeigte Ergebnisse: t.....Auslösezeit, Uc......Berührungsspannung

Hinweis:

 Zur Auswahl des entsprechenden Standard-Normativ sehen Sie 4.4.2 RCD Normativreferenzen.

5.3.3 Auslösestrom (RCD I_∆)

Bei der Bewertung der Fehlerstrom-Schutzeinrichtung wird ein stetig ansteigender Fehlerstrom für die Messung benutzt. Nach Beginn der Messung erhöht sich der durch das Gerät erzeugte Prüfstrom stetig beginnend bei $0,2 \times I_{\Delta N}$ bis $1,1 \times I_{\Delta N}$ (bzw. bis $1,5 \times I_{\Delta N}$ bei pulsierenden Gleichströmen als Fehlerstrom), bis die Fehlerstrom-Schutzeinrichtung auslöst.

		Prüfstrom	Wollopform
КСС-тур	Anfangswert	Endwert	wellemonn
AC	$0.2 \times I_{\Delta N}$	$1.1 \times I_{\Delta N}$	Sinusförmig
A ($I_{\Delta N} \ge 30$ mA)	$0.2 \times I_{\Delta N}$	1.5×I _{∆N}	Gepulst
A ($I_{\Delta N} = 10 \text{ mA}$)	$0.2 \times I_{\Delta N}$	$2.2 \times I_{\Delta N}$	
В	$0.2 \times I_{\Delta N}$	2.2×I∆N	DC

Der max. Prüfstrom beträgt I_{Δ} (Auslösestrom) oder Endwert (im Falle keiner Auslösung der Fehlerstrom-Schutzeinrichtung).

So wird der Auslösestrom gemessen

- Wählen Sie die RCD-Funktion.
- □ Stellen Sie Unterfunktion I⊿ ein.
- □ Stellen Sie die **Prüfparameter** (falls notwendig).
- Schließen Sie das Prüfkabel an das Instrument.
- Schließen Sie die Prüfleitungen an die zu prüfende Anlage an (siehe Abb. 5.12).
- Drűcken Sie die TEST-Taste.
- □ Speichern Sie das Ergebnis (optional).
- Schalten Sied die Fehlerstrom-Schutzeinrichtung (falls ausgelöst) wieder ein.

Auslösung

Nach erneutem Einschalten des RCDs

Abb. 5.17: Beispiel eines Ergebnisses der Auslösestrommessung

Angezeigte Ergebnisse: I.....Auslösestrom, Uci... ...Berührungsspannung bei Auslösestrom I oder Endwert bei keiner Auslösung von RCD, t......Auslösezeit.

5.3.4 RCD-Automatikprüfung

Zweck dieser Funktion ist die Durchführung einer vollständigen Prüfung der Fehlerstrom-Schutzeinrichtung und die Messung dazugehöriger Parameter (Berührungsspannung, Fehlerschleifenwiderstand und Auslösezeit bei verschiedenen Fehlerströmen) mit einer vom Instrument gesteuerten Abfolge automatischer Prüfungen. Wenn ein falscher Parameter während der automatischen Prüfung bemerkt wird, muss die Einzelprüfung des Parameters zur weiteren Untersuchung benutzt werden.

RCD-Automatikprüfung

RC	CD-Automatikprüfungsschritte	Anmerkungen	
	Wählen Sie die RCD-Funktion.		
	Stellen Sie Unterfunktion AUTO ein.		
	Stellen Sie Prüfparameter (falls notwendig) ein.		
	Schließen Sie den Prüfkabel an das Instrument.		
	Schließen Sie die Prüfspitzen an die zu prüfende Anlage		
	an (siehe <i>Abb. 5.12</i>).		
	Drücken Sie die TEST -Taste.	Beginn der Prüfung	
	Prüfen Sie mit ½×I∆N, 0° (Schritt 1).	RCD sollte nicht	
		auslösen	
	Prüfen Sie mit ½×I∆N, 180° (Schritt 2).	RCD sollte nicht	
		auslösen	
	Prüfen Sie mit I _{∆N} , 0° (Schritt 3).	RCD sollte auslösen	
	Aktivieren Sie RCD wieder.		
	Prüfen Sie mit I _{∆N} , 180° (Schritt 4).	RCD sollte auslösen	
	Aktivieren Sie RCD wieder.		
	Prüfen Sie mit 5×I∆N, 0° (Schritt 5).	RCD sollte auslösen	
	Aktivieren Sie RCD wieder.		
	Prüfen Sie mit 5×I _{ΔN} , 180° (Schritt 6).	RCD sollte auslösen	
	Aktivieren Sie RCD wieder.		
	Speichern Sie die Ergebnisse (optional).	Ende der Prüfung	

Beispiele der Ergebnisse:

Schritt 6

Abb. 5.18: Einzelne Schritte bei RCD-Automatikprüfung

Angezeigte Ergebnisse:

- t^{×1/2}Schritt 1 Auslösezeit (½×I∆N, 0^o),
- L^{*1}2Schritt 2 Auslösezeit (½×I∆N, 180º),
- ^t ∼¹Schritt 3 Auslösezeit (I∆N, 0º),
- [▲] ∴¹Schritt 4 Auslösezeit (I∆N, 180º),
- $1 \sim 10^{-10}$ Schritt 5 Auslösezeit (5×I Δ N, 0°),
- [▲]^{×5}[■]....Schritt 6 Auslösezeit (5×I∆N, 180º),

Uc.....Berührungsspannung.

Hinweis:

5.4 Fehlerschleifenimpedanz und Fehlerstrom

Die Fehlerschleife ist eine aus der Netzquelle, Phasenleiter und Schutzleiter/ Erdungswiderstand bestehende Schleife. Der Fehlerstrom ist der Strom innerhalb der Fehlerschleife, wenn ein Kurzschluss zwischen Phasenleiter und Schutzleiter auftritt. Das Instrument ist imstande, die Impedanz der genannten Schleife zu messen und den Fehlerstrom der zu berechnen. Die Messung wird gemäß EN 61557-3 Standard durchgeführt.

Informationen über die aktiven Tasten erhalten Sie im Abschnitt 4.2 Einzelprüfung.

Abb. 5.19: Fehlerschleifenimpedanz

Prüfparameter für Fehlerschleifenimpedanzmessung

Schutz	Schutztyp [RCD, FUSE]* (RCD oder Sicherung) wählen	
Sicherungstyp	Sicherungstyp [, NV, gG, B, C, K, D] ** wählen	
Sicherung I	Nennstrom der ausgewählten Sicherung	
Sicherung T.	Auslösezeit der ausgewählten Sicherung	
lsc_lim	Minimaler Kurzschlussstrom für ausgewählte Sicherungskombination.	
D' D (

Die Referenzen bezüglich Sicherungsangaben erhalten Sie im Anhang A.

* Wählen Sie RCD um Auslösung von RCD zu vermeiden.

** --- Keine Sicherung wurde ausgewählt.

Anschlussplan für Fehlerschleifenimpedanzmessung

Abb. 5.20: Anschluss des Taster-Steckers und Universalprüfkabels

So wird die Fehlerschleifenimpedanz gemessen

- □ Wählen Sie die ZS (L-PE)-Funktion.
- □ Wählen Sie Prüfparameter (optional).
- Schließen Sie die Prüfleitungen an die zu prüfende Anlage an (siehe Abb. 5.19).
- Drücken Sie die **TEST**-Taste.
- Speichern Sie das Ergebnis (optional).

Abb. 5.21: Beispiele für Ergebnisse der Schleifenimpedanzmessung

Angezeigte Ergebnisse:

Z.....Fehlerschleifenimpedanz,

Isc.....Unbeeinflusster Fehlerstrom,

R.....Wirk Widerstandsanteil,

XI.....Blind Widerstandsanteil.

Unbeeinflusster Fehlerstrom I_{SC} wird auf der Grundlage der ausgemessener Impedanz wie folgt berechnet:

$$I_{\rm SC} = \frac{Un \times k_{\rm SC}}{Z}$$

mit:

Un......Nenn- U_{L-PE} -Spannung (siehe die untere Tabelle), ksc......Strom-Skalierungsfaktor für Isc (siehe Abschnitt *4.4.2*).

Un	Eingangsspannung (L-PE)	
110 V	$(93 \text{ V} \le \text{U}_{L-\text{PE}} < 134 \text{ V})$	
230 V	$(185 \text{ V} \le \text{U}_{\text{L-PE}} \le 266 \text{ V})$	

Hinweis:

- Hohe Schwankungen der Netzspannung beeinflussen das Messergebnis. In solchem Fall wird im Meldungsfeld das Störungszeichen Angezeigt.
 Wiederholen Sie die Messung.
- Isc wird nicht berechnet, wenn der Klemmenspannungswächter keinen dem ausgewählten Versorgungssystem entsprechenden Spannungsstand entdeckt, Anzeiger?
- Diese Messung löst RCD in RCD-geschüzten elektrischen Installationen aus, wenn als Schutztyp SICHERUNG anstatt RCD ausgewählt wird.

5.5 Leitungsimpedanz/unbeeinflusster Kurzschluss-Strom und Spannungsfall

Die Leitungsimpedanz wird in einer Schleife gemessen, die aus der Netzspannungsquelle und der Leitungsverdrahtung besteht. Die Messung wird durch die Anforderungen der Norm EN 61557-3 abgedeckt.

Mit der Unterfunktion des Spannungsfalls kann sichergestellt werden, dass eine Spannung in der Anlage oberhalb der zulässigen Werte bleibt, wenn der maximale Strom in der Schaltung fließt. Der maximale Strom ist als Nennstrom der Sicherung für die Schaltung definiert. Die Grenzwerte sind in der Norm EN 60364-5-52 beschrieben.

Unterfunktionen:

- □ Z-LINE Leitungsimpedanzmessung gemäß EN 61557-3,
- ΔU Spannungsfallmessung

Informationen über die Funktionen der Tasten erhalten Sie im Abschnitt *4.2 Einzelprüfung*.

Abb. 5.22/1: Leitungsimpedanz

Abb. 5.22/2: Spannungsfall

Prüfparameter für Leitungsimpedanzmessung

TEST	Unterfunktion [Z, ΔU] wählen
SICHERUNGSTYP	Sicherungstyp [, NV, Gg, B, C, K, D] * wählen
SICHERUNG I	Nennstrom der ausgewählten Sicherung
SICHERUNG T	Auslösezeit der ausgewählten Sicherung
lsc_lim	Minimaler Kurzschluss-Strom für ausgewählte
	Sicherungskombination.

Siehe Anhang A für Sicherungsangaben.

*--- Keine Sicherung wurde ausgewählt

Zusätzliche Prüfparameter für die Spannungsfallmessung

|--|

Leitungsimpedanz und unbeeinflusster Kurzschluss-Strom

Abb. 5.23: Messung des Phase-Neutral oder Phase-Phase Leitungswiderstands – Anschluss des Taster-Steckers und Universalprüfkabels

So wird die Leitungsimpedanz gemessen

- Wählen Sie die LEITUNGSIMPEDANZ -Funktion.
- □ Wählen Sie die Unterfunktion Z.
- Wählen Sie die **Prüfparameter** (optional).
- Schließen Sie das Prüfkabel an das Instrument.
- Schließen Sie die Prüfleitungen an die zu prüfende Anlage an (siehe Abb. 5.23).
- Drücken Sie die TEST-Taste.
- □ Speichern Sie das Ergebnis (optional).

Phase- Neutral

Phase-Phase

Angezeigte Ergebnisse: Z.....Leitungsimpedanz, Isc.....Unbeeinflusster Kurzschluss-Strom, R.....Wirk Widerstandsanteil, XL.....Blind Widerstandsanteil.

Unbeeinflusster Kurzschluss-Strom wird wie folgt berechnet:

$$I_{SC} = \frac{Un \times k_{SC}}{Z}$$

mit:

Un Nenn- L-N oder L1-L2 Spannung (siehe untere Tabelle), ksc Strom-Skalierungsfaktor (siehe Abschnitt *4.4.2*).

Un	Eingangsspannungsbereich (L-N or L1-L2)
110 V	$(93 \text{ V} \le \text{U}_{\text{L-N}} < 134 \text{ V})$
230 V	(185 V ≤ U _{L-N} ≤ 266 V)
400 V	(321 V < U _{L-L} ≤ 485 V)

Hinweise:

- Hohe Schwankungen der Netzspannung beeinflussen das Messergebnis. In solchem Fall wird im Meldungsfeld das Störungszeichen Wiederholen Sie die Messung.
- Isc wird nicht berechnet, wenn der Klemmenspannungswächter keinen dem ausgewählten Versorgungssystem entsprechenden Spannungsstand entdeckt, Anzeiger ?.

5.5.1 Spannungsfall

Der Spannungsfall wird anhand der Differenz zwischen der Leitungsimpedanz an den Anschlussstellen (Steckdosen) und der Leitungsimpedanz an der Referenzstelle (in der Regel die Impedanz an der Zentrale) berechnet.

Anschlussplan für die Spannungsfallmessung

Abb. 5.1: Messung des Phase-Neutral oder Phase-Phase Spannungsfalls – Anschluss des Taster-Steckers und 3-Leiter-Prüfkabels

So wird der Spannungsfall gemessen

Schritt 1: Messung der Impedanz Zref an der Quelle der elektrischen Anlage

- Wählen Sie die LEITUNGSIMPEDANZ-Funktion.
- **u** Wählen Sie die Unterfunktion **ΔU**.
- Wählen Sie die **Prüfparameter** (optional).
- Schließen Sie das Prüfkabel an das Instrument an.
- Schließen Sie die Pr
 üfleitungen an die Quelle der elektrischen Anlage an (siehe Abb. 5.25).
- Drücken Sie die Taste F1, um die Messung von Zref auszuführen.

Schritt 2: Messung des Spannungsfalls

- **Lassen Sie die Unterfunktion ΔU ausgewählt.**
- Wählen Sie die **Prüfparameter** (Wahl des Sicherungstyps obligatorisch).
- Schließen Sie die Pr
 üfleitungen an die Pr
 üfstellen an (siehe Abb. 5.25).
- Drücken Sie die **TEST**-Taste, um die Messung vorzunehmen.
- **Speichern** Sie das Ergebnis nach Abschluss der Messung (optional).

Schritt 1 – Zref

Angezeigte Ergebnisse: ΔU......Spannungsfall, I_{SC}.....Unbeeinflusster Kurzschluss-Strom, Z.....Leitungsimpedanz an der gemessenen Stelle, Zref......Referenzimpedanz

Der Spannungsfall wird wie folgt berechnet:

$$\Delta U[\%] = \frac{(Z - Z_{REF}) \cdot I_N}{U_N} \cdot 100$$

mit:

ΔU.....errechneter Spannungsfall

Z Impedanz an Prüfstelle

Z_{REF}.....Impedanz an Referenzstelle

I_N......Nennstrom der gewählten Sicherung

U_N......Nennspannung (siehe nachstehende Tabelle)

Un	Eingangsspannungsbereich (L-N or L1-L2)
110 V	$(93 \text{ V} \le \text{U}_{\text{L-N}} < 134 \text{ V})$
230 V	$(185 \text{ V} \le \text{U}_{L-N} \le 266 \text{ V})$
400 V	(321 V < U _{L-L} ≤ 485 V)

Hinweise:

- $\hfill \hfill \hfill$
- Zref wird gelöscht (auf 0,00 Ω eingestellt), wenn die Taste F1 gedrückt wird und am Instrument keine Spannung angelegt ist.

- I_{SC} wird wie in Kapitel 5.5.1 zu Leitungsimpedanz und unbeeinflusstem Kurzschluss-Strom beschrieben berechnet.
- Wenn die gemessene Spannung außerhalb der Bereiche in der obenstehenden Tabelle liegt, wird das Ergebnis von ΔU nicht berechnet.
- Hohe Schwankungen der Netzspannung können die Messergebnisse beeinflussen (das Störungszeichen wird im Meldungsfeld angezeigt). In diesem Fall wird empfohlen, einige Messungen zu wiederholen, um zu überprüfen, ob die Anzeigen stabil sind.

5.6 Spannung, Frequenz und Phasenfolgeprüfung

Spannungs- und Frequenzmessung sind im Klemmenspannungswächter immer aktiv. Im speziellen Spannungsmenü können die gemessene Spannung und Frequenz sowie auch die Angaben über festgestellten Dreiphasenanschluss gespeichert werden. Phasensequenzmessungen entsprechen dem EN 61557-7 Standard.

Informationen über die Funktion der Tasten erhalten Sie im Abschnitt *4.2 Einzelprüfungen.*

Abb. 5.27: Spannung im Einzelphasen-System

Prüfparameter für Spannungsmessung

Keine Parameter.

Anschlussplan für Spannungsmessung

Abb. 5.28: Anschluss des Universalprüfkabels und des optionalen Adapters im Dreiphasen-System

Abb. 5.29: Anschluss des Taster-Steckers und Universalprüfkabels im Einzelphasen-System

So wird die Spannung gemessen

- □ Wählen Sie die SPANNUNG-Funktion.
- □ Schließen Sie das Prüfkabel an das Instrument.
- Schließen Sie die Pr
 üfleitungen an die zu pr
 üfende Anlage an (siehe Abb. 5.28 und 5.29).
- □ Speichern Sie das Ergebnis (optional).

Die Messung wird durchgeführt, sofort nachdem die **SPANNUNG** -Funktion ausgewählt wird.

Abb. 5.30: Beispiel der Spannungsmessung im Dreiphasen-System

Angezeigte Ergebnisse:

UI-nSpannung zwischen Phasen- und Neutralleitern,

UI-peSpannung zwischen Phasen- und Schutzleitern,

Un-pe.....Spannung zwischen Neutral- und Schutzleitern.

Bei der Prüfung eines Dreiphasennetzes werden folgende Ergebnisse angezeigt:

- U1-2Spannung zwischen den Phasen L1 und L2,
- U1-3Spannung zwischen den Phasen L1 und L3,

U2-3Spannung zwischen den Phasen L2 und L3,

- **1.2.3** Richtige Verbindung CW Rotationssequenz,
- 3.2.1 Falsche Verbindung- CCW Rotationssequenz.
- 2.3.1.....Falscher Anschluss.

5.7 Erdungswiderstand

Der Erdungswiderstand ist wichtig für den Schutz gegen elektrische Schläge. Zweck dieser Prüfung ist es, die System-Erdungssonde der Installation und andere Erdungen, z.B. das Blitzableitersystem zu überprüfen. Die Messungen werden gemäß den EN 61557-5 Standards durchgeführt.

Vier Erdungswiderstand-Unterfunktionen sind verfügbar:

- Die Standard-3-Leiter Prüfung, zur Standard-Erdungswiderstandsmessung.
- Prüfung mit einer Stromzange, zur Messung des Erdungswiderstands von einzelnen Erdungssonden.
- Prüfung mit zwei Stromzangen (auch empfohlen im IEC 60364-6 für Stadtzonen), zur Messung des Erdungswiderstands von einzelnen Erdungssonden und Verbindungen).

Informationen über die Funktion der Tasten erhalten Sie im Abschnitt *4.2 Einzelprüfung*.

Abb. 5.31: Erdungswiderstand

Parameter für Erdungswiderstandsmessung

PRÜFUNG	Prüfung [3-Leiter, eine Stromzange, zwei Stromzangen]
Grenze	Max. Widerstand [AUS, $1\Omega \div 5 \text{ k}\Omega$, (2 Zangen: $1 \Omega \div 20 \Omega$)]

5.7.1 Leiter Erdungswiderstandsmessung

Anschlussplan für die 3-Leiter-Erdungswiderstandsmessung

Abb. 5.32: Erdungswiderstandsmessung (3 Leiter) – System-Erdungswiderstand

Abb. 5.33: Erdungswiderstandsmessung – Blitzableitersystem

So wird der Erdungswiderstand (3-Leiter Prüfung) gemessen

- Wählen Sie die ERDUNG-Funktion.
- Wählen Sie die 3 -Leiter-Unterfunktion.
- □ Ermöglichen und stellen Sie den **Grenzwert** ein (optional).
- Schließen Sie die Pr
 üfleitungen an die zu pr
 üfende Anlage und Messsonden (siehe Abb. 5.29 und 5.30).
- Drücken Sie die **TEST**-Taste.
- Speichern Sie das Ergebnis (optional).

Abb. 5.34: Beispiel eines Ergebnisses der Erdungswiderstandsmessung

Angezeigte Ergebnisse für Erdungswiderstandsmessung:

R.....Erdungswiderstand,

Rc.....Widerstand der S- (Mess) Sonde,

Rp.....Widerstand der H- (Hilfserder) Sonde.

5.7.2 Prüfung mit einer Stromzange

Die Messung unterstützt die Prüfung von einzelnen Erdungselektroden im Erdungssystem.

Anschlussplan für Erdungswiderstandsmessung mit einer Stromzange

Abb. 5.35: Erdungswiderstand, Messung mit einer Stromzange

So wird der Erdungswiderstand mit einer Stromzange gemessen

- Wählen Sie die **ERDUNG**-Funktion.
- Wählen Sie die Unterfunktion (Erdungswiderstandsmessung mit einer Stromzange).
- Ermöglichen und stellen Sie die **Grenze** ein (optional).
- **Schließen** Sie das Prüfkabel und dieStromzange and das Instrument an.
- Schließen Sie die Pr
 üfspitzen und Stromzange an die zu pr
 üfende Anlage an (siehe Abb. 5.35).
- Drücken Sie die **TEST**-Taste.
- Nachdem die Messung durchgeführt wird, speichern Sie das Ergebnis (optional).

Abb. 5.36: Beispiel des Ergebnisses der Erdungswiderstandsmessung mit eine Stromzange

Angezeigte Ergebnisse für Erdungswiderstandsmessung:

R.....Erdungswiderstand des gemessenen Erdungslinien,

Rc.....Widerstand der S-Sonde,

Rp.....Widerstand der H-Sonde,

Re.....Erdungswiderstand des geprüften Systems.

Hinweis:

5.7.3 Prüfung mit zwei Stromzangen

Zweck dieser Messung ist die Prüfung der einzelnen Elektroden und Verbindungen im Erdungssystem, vor allem in Stadtzonen. Diese Messung wird auch von IEC 60364-6:2006 erfordert.

Anschlussplan für Erdungswiderstandsmessung mit zwei Stromzangen

Abb. 5.37: Erdungswiderstandmessung mit zwei Stromzangen

So wird der Erdungswiderstand mit zwei Zangen gemessen

- Wählen Sie die **ERDUNG**-Funktion.
- Wählen Sie die Unterfunktion (Erdungswiderstandsmessung mit zwei Stromzangen).
- □ Ermöglichen und stellen Sie die Grenze ein (optional).
- **Schließen** Sie beide Stromzangen an das Instrument an.
- Schließen Sie beide Stromzangen an die zu pr
 üfende Anlage an (siehe Abb. 5.33).
- Drücken Sie die **TEST**-Taste.
- Nachdem die Messung durchgeführt wird, speichern Sie das Ergebnis (optional).

Abb. 5.38: Beispiel des Ergebnisses der Erdungswiderstandsmessung mit zwei Stromzangen

Angezeigtes Ergebnis für Erdungswidertsandsmessung: R.....Erdungswiderstand.

Hinweis:

Der Abstand zwischen den Stromzangen soll mindestens 30 cm betragen.
5.7.4 Prüfung des spezifischen Erdwiderstandes

Als Ausgangsbasis für die richtige Dimensionierung und Berechnung des Erdungssystemes (erforderliche Länge und Oberflächen, sinnvolle Tiefe für die Tiefenerder usw.) ist der spezifische Erwiderstand an der betreffenden Stelle zu messen.

Die Prüfung des spezifischen Erdwiderstandes kann mit dem optionalen Adapter A1199 durchgeführt werden.

Anschlussplan für die spezifischer Erdwiderstand-Prüfung

Abb. 5.39: Spezifische Erdwiderstand- Prüfung mit dem ρ -Adapter

So wird der spezifische Erdwiderstand gemessen

- Wählen Sie die ERDUNG Funktion.
- **Schließen** Sie den ρ-Adapter an das Prüfgerät an.
- □ Wählen Sie die Unterfunktion "spezifischer Erdwiderstand".
- □ Wählen Sie die Länge-Einheit (optional).
- **Schließen** Sie den ρ-Adapter an die Prüfsonden an (siehe Abb. *5.39*).
- Drücken Sie die **TEST**-Taste.
- Nachdem die Messung durchgeführt wird, speichern Sie das Ergebnis (optional).

Abb. 5.40: Beispiel des Ergebnisses der spezifischer Erdwiderstandsmessung

Angezeigte Ergebnisse

ρ Spezifischer Erdwiderstand

Rc.....Widerstand der S-Sonde,

Rp.....Widerstand der H-Sonde.

Die Länge-Einheit wird im Sonstiges/Ursprüngliche Einstellungen/Weitere Einstellungen Menü eingestellt, siehe 4.4.5.

5.8 TRMS Strom

Zweck dieser Funktion ist die Messung von Ableits-und Last- Ströme mit einer Stromzange.

Informationen über die Funktion der Tasten erhalten Sie im Abschnitt *4.2 Einzelprüfung*.

<mark>⊕</mark> cur	RENT: I	01:15
	l: <u> </u>	mA
Limit:	ON	L1 PE L2 Q Q Q Q
Limit:	0.5mA	- 0

Abb. 5.41: TRMS Strom

Prüfparameter für die Messung mit Stromzangen

Grenze Max. Strom [AUS, 0.1 mA ÷ 100 mA]

Anschlussplan für Strommessungen

Abb. 5.42: Messungen des Ableits- und Laststroms

So wird der Strom gemessen

- Wählen Sie die **STROM**-Funktion.
- □ Stellen Sie die **Prüfparameter** ein.
- Ermöglichen und stellen Sie den Grenzwert ein (optional).
- Schließen Sie die Stromzange an das Instrument und an die zu pr
 üfende Anlage an (siehe Abb. 5.36).
- Drücken Sie die **TEST**-Taste, um die Messung anzufangen.
- Drücken Sie erneut die **TEST**-Taste, um die Messung zu beenden.
- **Speichern** Sie das Ergebnis (optional).

Abb. 5.43: Beispiel eines Ergebnisses der Messung mit der Stromzange

Angezeigtes Ergebnis:

IStrom.

Hinweise:

- Der angezeigte Strom stellt den r.m.s.-Wert f
 ür die Stromzange mit einem Verh
 ältnis 1000:1.
- Verwenden Sie von METREL gelieferte Pr
 üfzange oder eine andere mit ähnlichen Merkmalen (Stromausgang, Verh
 ältnis 1000:1, entsprechender Messbereich; beachten Sie bei Bewertung von Messergebnissen den Fehler der Stromzange)!
- Die Stromzangen Metrel A 1074 und A 1019 sind geeignet f
 ür den Messbereich von 0.2 A ÷ 20 A. Unter 0.2 A k
 önnen sie nur als Indikator verwendet werden. Sie sind nicht geeignet f
 ür Messungen des Ableitsstroms.
- Für Messungen des Ableitsstroms ist die METREL Stromzange A 1018 (1000 A/1 A) geeignet.

5.9 Sensoren und Adaptern

Diese Funktion erweitert den Anwendungsbereich des Instruments durch die Verwendung der äußeren Sensoren und Adaptern von Metrel. Die Sonden werden an das Instrument über die RS 232-Schnittstelle angeschlossen.

Das Instrument erkennt eine angeschlossene Sonde automatisch.

5.9.1 Beleuchtung

Die Messung wird mit den Sonden LUX-Meter Typ B oder LUX-Meter Typ C durchgeführt, um die Beleuchtung zu prüfen und bestätigen.

Weitere Informationen über die Funktion der Tasten erhalten Sie im Abschnitt 4.2 Einzelprüfung.

Abb. 5.44: Beleuchtung

Prüfparameter für die Beleuchtungsmessung

Grenze	Min. Beleuchtung [AUS: 0.1 lux - 20.0 klux]
0.0.120	

Anschlussplan für Beleuchtungsmessung

Abb. 5.45: Anschluß der LUX-Sonde an das Instrument

Abb. 5.46: Position der LUX-Meter-Sonde

So wird die Beleuchtung gedmessen

- **Schließen** Sie die LUX- Sonde an das Instrument an (siehe Abb. 5.45).
- □ Wählen Sie die **SENSORS**-Funktion.
- □ Ermöglichen und stellen Sie den **Grenzwert** ein (optional).
- □ Schalten Sie die LUX-Sonde EIN (EIN/AUS-Taste, grüner LED leuchtet).
- Drücken Sie die **TEST**-Taste zur Messung.
- Drücken Sie die **TEST**-Taste, um die Messung zu beenden.
- □ Schalten Sie die LUX-Sonde AUS.
- **Speichern** Sie das Ergebnis (optional).

Abb. 5.47: Bespiel eines Ergebnisses der Beleuchtungsmessung

Angezeighte Ergebnisse: E.....Beleuchtung.

Hinweise:

- Beachten Sie die Position der LUX-Sonde.
- Für genaue Messungen sichern Sie, dass der Lichtsensor beleuchtet ist und nicht durch Hände, Körper oder andere störende Gegenstände überschatten wird.
- Es ist wichtig zu wissen, dass es dauert, bevor die volle Betriebskraft von künstlichen Beleuchtungsquellen hergestellt wird (sehen Sie die technischen Angaben für Beleuchtungsquellen). Deswegen sollen sie mindestens für den angegebenen Zeitraum vor der Prüfung eingeschaltet sein.

5.9.2 2 Ω Leitungs- /Schleifenimpedanzadapter

Diese Messung wird mit dem Impedanzadapter A1143 durchgeführt. Er wird automatisch in beiden Impedanz-Funktionen erkannt. Mit diesem Adapter können sehr niedrige Impedanzen bis zu 1999 m Ω gemessen. Die Messung wird gemäß den Anforderungen von EN 61557-3 Standard durchgeführt.

Weitere Informationen über die Anwendung und technichen Angaben des Impedanzadapters erhalten Sie im A 1143 Benutzerhandbuch (20750859).

Weitere Informationen über die Funktion der Tasten erhalten Sie im Abschnitt *4.2 Einzelprüfung*.

Abb. 5.48: Impedanzmessung mit dem Adapter

Prüfparameter für 2 Ω Leitungs-/Schleifenimpedanzmessung

Funktion Z-LINE		
Prüfung	Impedanzfunktion [m Ω L-N, m Ω L-L]	
Funktionen Z-LINE und Z-LOOP		
SICHERUNGTYP	Sicherungstyp [, NV, gG, B, C, K, D] * wählen	
SICHERUNG I	Nennstrom der ausgewählten Sicherung	
SICHERUNG T	Auslösezeit der ausgewählten Sicherung	
lsc_lim	Minimaler Kurzschluss-Strom für ausgewählte	
	Sicherungskombination.	
Isc_lim	Minimaler Kurzschluss-Strom für ausgewählte Sicherungskombination.	

Siehe Anhang A für Sicherungsangaben.

*--- Keine Sicherung wurde ausgewählt

Zusätzliche Taste:

F2	Schaltet zwischen Ergebnis-Displays.
----	--------------------------------------

Anschluss des Adapters

Abb. 5.49: Anschluss des Impedanzadapters an das Instrument

So wird die 2 Ω Leitungs-/Schleifenimpedanz gemessen

- **Schließen** Sie den Impedanzadapter an das Instrument an (siehe Abb. 5.49).
- Wählen Sie die Funktionen Z-LINE oder Z-LOOP.
- Ermöglichen und stellen Sie den **Grenzwert** ein (optional).
- □ Schalten Sie den Impedanzadapter EIN (EIN-/AUS-tASTE, green LED lits).
- **Schließen** Sie den Impedanzadapter an die zu prüfende Installation an.
- Drücken Sie die **TEST**-Taste zur Messung.
- **Speichern** Sie das Ergebnis (optional).

Abb. 5.50: Beispiel eines Ergebnisses der 2 Ω Leitungs-/Schleifenimpedanzmessung

Angezeigte Ergebnisse:

Z.....Leitungs- / Schleifenimpedanz, Isc.....Unbeeinflusster Kurzschluss-Strom, R.....Wirk Widerstandsanteil, XI.....Blind Widerstandsanteil.

Die folgenden Parameter werden im Unter-Display für die Messung der Einzelphasen-Leitungsimpedanz angezeigt:

IscMaxL-N Max. unbeeinflusster Kurzschluss-Strom.

IscMinL-N Min. unbeeinflusster Kurzschluss-Strom.

IscStd Standard unbeeinflusster Kurzschluss-Strom.

Bei der Prüfung der Phasen-Phasen-Leitungsimpedanz werden die folgenden Parameter in Unter-Display angezeigt:

IscMax3Ph Max. 3-Phasen unbeeinflusster Kurzschluss-Strom. IscMin3Ph Min. 3-Phasen unbeeinflusster Kurzschluss-Strom. IscMax2Ph Max. 2-Phasen unbeeinflusster Kurzschluss-Strom. IscMin2Ph Min. 2-Phasen unbeeinflusster Kurzschluss-Strom. IscStd Standard unbeeinflusster Kurzschluss-Strom.

Die folgenden Parameter werden im Unter-Display für die Messung der Schleifenimpedanz angezeigt:

IscMaxL-Pe Max. unbeeinflusster Fehlerstrom. IscMinL-Pe Min. unbeeinflusster Fehlerstrom. IscStd Standard unbeeinflusster Fehlerstrom. Ub..... Berührungsspannung bei max. unbeeinflusster Fehlerstrom (Die Berührungsspannung wird gegen die Sonde-S-Klemme gemessen).

Hinweise:

- Die Messergebnisse können durch hohe Schwankungen der Netzspannung beeinflusst werden..
- Überprüfen Sie die Anzeigen am Adapter, falls nach dem Begin der Messung das Abbrechen-Symbol O angeblendet wird.

5.10 Prüfung des Schutzleiteranschlusses

Bei neuen oder angepassten Installationen kann es vorkommen, dass der Schutzleiter mit dem Phasenleiter vertauscht wurde - dies ist eine sehr gefährliche Situation! Darum ist es wichtig, auf Vorhandensein von Phasenspannung am Schutzleiteranschluss zu prüfen.

Diese Prüfung wird vor Prüfungen durchgeführt, bei denen die

Netzversorgungsspannung an die Schaltung des Instruments angelegt wird, bzw. bevor die Installation in Betrieb geht.

Mit Betätigung der **TEST**-Taste bei allen Funktionen, die eine Netzversorgung fordern, führt der Benutzer die Prüfung automatisch durch.

Anwendungsbeispiele

Abb. 5.51: Anschluss des Taster-Steckers an die Netzsteckdose mit vertauschten Lund PE-Leitern

Abb. 5.52: Anschluss des Universalprüfkabels an Lastanschlussklemmen mit vertauschten L- und PE-Leitern

So wird der Schutzleiteranschluss geprüft

- Schließen Sie die Pr
 üfleitungen an die zu pr
 üfende Anlage an (siehe Abb. 5.51 und 5.52).
- Betätigen Sie den PE-Prüffühler (die **TEST**-Taste) für wenigstens eine Sekunde.
- Falls der PE- Anschluss zu Phasenspannung verbindet ist, wird ein Warnhinweis angezeigt, der Warnton wird aktiviert, und weitere Messungen in FEHLERSCHLEIFENIMPEDANZ und RCD-Funktionen werden gesperrt.

Achtung:

Wenn an der gepr
üften PE-Klemme eine Leitungsspannung festgestellt wird, beenden Sie sofort alle Messungen, finden und beseitigen Sie den Fehler!

Hinweise:

- □ Im Haupt- und Sonstiges-Menüs wird die PE-Klemme nicht geprüft.
- PE-Prüffühler ist nicht funktionsfähig, falls der Körper der Bedienungsperson komplett von dem Boden oder den Wänden isoliert ist!

5.11 Leitungssucher

Zweck dieser Funktion ist das Suchen und Verfolgen von Leitungen und Sicherungen.

Das Instrument generiert Prüfsignale, die mit dem Empfänger R10K detektiert werden können. Weitere Informationen erhalten Sie im Anhang *Leitungssucher*.

Abb. 5.53: Leitungssucher

Parameter für Leitungssucher

Es gibt keine Parameter.

Typische Anwendungen der Leitungssucher-Funktion

Abb. 5.54: Verfolgung von Leitungen unter den Wänden und in Gehäusen

So werden die Leitungen verfolgt

- Wählen Sie die LOKATOR-Funktion im Sonstiges-Menü.
- □ Schließen Sie das Prüfkabel an das Instrument.
- Schließen Sie die Pr
 üfleitungen an die zu pr
 üfende Anlage an (siehe Abb. 5.54 und 5.55).
- Drücken Sie die **TEST**-Taste.
- Verfolgen Sie die Leitungen mit dem Empfänger (IND-Modus) oder dem Empfänger und dessen optionalen Zubehör.
- Drücken Sie die **ESC**-Taste, um die Leitungssuche zu beenden.

Abb. 5.56: Leitungssuche aktiviert

5.12 Schutzpegel von Überspannungsschutzeinrichtungen

Mit dem Test-Gerät kann der Schutzpegel von Überspannungsschutzeinrichtungen schnell und einfach gemessen werden. Die Messung erfolgt mit einer Spannungsrampe von 0..1000V bei einem Prüfstrom von 1mA.

Weitere Informationen über die Funktion der Tasten erhalten Sie im Abschnitt *4.2 Einzelprüfung*.

Figure 5.57: Varistor test menu

Prüfparameter

Lo limit	Unterer Grenzwert - DC Ansprechspannung [50 V ÷ 1000 V]
Hi limit	Oberer Grenzwert - DC Ansprechspannung [50 V ÷ 1000 V]
lt = 1.00 mA	Ansprechstrom

Anschlussplan für Schutzpegelmessung

Figure 5.58: Messung des Schutzpegels – Anschluss des Universalprüfkabels

So wird der Schutzpegel von Überspannungsschutzeinrichtungen gemessen

- Wählen Sie die VARISTOR- Funktion.
- □ Stellen Sie **Prüfparameter** ein.

- Drücken Sie die TEST-Taste zur Messung .
- Nach der durchgeführten Messung, warten Sie bis die zu pr
 üfende Überspannungsschutzeinrichtung entladen wird.
- **Speichern** Sie das Ergebnis (optional).

Figure 5.59 Beispiel eines Ergebnisses der Schutzpegelmessung

Angezeigte Ergebnisse: U.....Ansprechspannung bei It (1 mA). Uac......Nominale (AC) Spannung.

Hinweise:

 Überspannungsschutzeinrichtungen werden üblicherweise auf 15%...20% oberhalb des Scheitelwerts der Nennspannung des Netzes ausgelegt. Der Schutzpegel wird direkt als Gleichspannung oder als maximaler Effektivwert der Netzspannung (Uac) angezeigt.

Beispiel:

Nennspannung Un = 230V

Scheitelwert der Netznennspannung = 230V·1,41 = 324V

Ansprechspannung = (1.41 + 0.2)·Un \cong Un·1.6 = 368V

• Das angezeigte Messergebnis (Uac) kann direkt mit dem angegebenen Wert auf der Überspannungsschutzeinrichtungen verglichen werden.

6 Handlung mit Angaben

6.1 Speicheraufbau

Die folgenden Angaben können im Speicher des Instruments gespeichert werden:

- □ Automatiksequenznamen, Sequenz, und Funktionsparameter,
- Automatiksequenz- und Einzelprüfergebnisse mit dazugehörenden Parametern,
- Installationsstruktur mit dazugehörenden Angaben.

Der Speicheraufbau des Instruments kann sich an die zu prüfende Installation anpassen. Die Messergebnisse können den entsprechenden Speicherstruktur-Elementen zugefügt werden.

6.2 Aufbau der Speicherstruktur nach den Installationsangaben

Mit Hilfe dieser Funktion ist die Handlung mit Angaben leicht und effektiv. Der Speicheraufbau kann entsprechend der aktuellen Struktur der geprüften elektrischen Installation angefertigt werden.

Hauptvorteile sind:

- Prüfergebnisse können gleich wie die Struktur der geprüften elektrischen Installation strukturell organisiert und angeordnet werden. Wenn zur Überprüfung der elektrischen Installation ein Prüfplan vorbereitet wird, ist es möglich, die Angabenstruktur gemäß dem Plan aufzubauen. Jede zu prüfende Stelle z.B. ein Schaltschrank, Steckdose, Schalter usw. können als eigene Stelle im Speicher dargestellt werden.
- Einfaches browsing durch die Struktur und Ergebnisse.
- Prüfberichte können mit keiner oder wenig Modifizierung erstattet werden, nachdem die Ergebnisse an den PC übertragen werden.
- Prüfungen können in voraus am PC vorbereitet und an das Instrument übertragt werden.
- □ Am Instrument kann eine neue Installationsstruktur aufgebaut werden.
- □ Eine bestehende Struktur kann am Instrument aufgerüstet werden.
- □ Jeder Stelle kann ein Name zugefügt werden.

Die Angabenstruktur ist sowohl in jedem der drei Hauptmenüs des Speichers (Speichern, Abrufen, Löschen des Speichers) als auch mittels Baumstrukturansichts zugänglich und kann auf den neuesten Stand gebracht werden.

Baumstrukturansicht

Abb. 6.2: Beispiel einer Installationsstruktur wie am PC dargestellt

Legende:		
RECALL MEMORY	Menü 'Angaben abrufen'	
METREL d.d. PRODUCT. PRODUCT. SPH SOCKET 1/1 2/5 ↓ 1/3	Strukturfeld der Installationsangaben	
METREL d.d. 1/1	 Grundebene in der Struktur: METREL d.d.: Stellenname der ersten Ebene. 1/1: Nr. ausgewählter / verfügbarer Stellen auf dieser Ebene. 	
PRODUCT. E: 2/5	 Unterebene (Ebene 2) in der Struktur: PRODUCT.: Stellenname. 2/5: Nr. ausgewählter / verfügbarer Stellen auf dieser Ebene. 	
3PH SOCKET ⊕ 1/3	 Unterebene (Ebene 3) in der Struktur: 3PH SOCKET: Stellenname. 1/3: Nr. ausgewählter / verfügbarer Stellen auf dieser Ebene. 	
FREE: 99.8% SELECTED: 446 001 INSULATION 07.Sep.2005 10:18 002 CONTINUITY 07.Sep.2005 10:18 003 Z-LINE 07.Sep.2005 10:27 004 RCD ✓ 07.Sep.2005 10:28	Ergebnisfeld – an ausgewählter Stelle gespeicherte Ergebnisse.	
$\leftarrow \rightarrow \land \lor$	Pfeilen zeigen auf die bestehenden, nicht angezeigten Strukturstellen.	
FREE : 98.9%	Verfügbarer Speicherplatz.	
SELECTED : 4/43	Nr. an einer ausgewählten Stelle gespeicherten Prüfergebnisse / Nr. allen gespeicherten Prüfergebnisse (in gesamter Struktur).	
HELP 🚘	Option zum Aufmachen der Baumansicht der Struktur.	
(I RENAME) (I ADD)	Optionen zur Modifizierung der Struktur (siehe Abschnitt 6.5).	

Hinweis:

 Nur drei Stellen in der Struktur des Installationsangabenfeldes (horizontal gestellt) können in der Grundansicht gleichzeitig angezeigt werden.

Tasten:

$\psi/ \wedge / \leftarrow / \rightarrow$	Die bestehende Stelle wählen.
\checkmark	Für zwei Sekunden drücken, um das Dialog-Fenster zur Zufügen einer neuen Stelle öffnen
F2	Das Dialog-Fenster zur Zufügen einer neuen Stelle öffnen.
F1	Die aktuelle Stelle umbenennen.
HELP	Zur Baumstrukturansicht gehen.
ESC	Zurück zum letztem Betriebsmenü des Instruments.

Hinweis:

 Die Baumstruktur ist auf 2000 Stellen mit 10 Ebenen in Tiefe begrenzt, sehen Sie Abb. 6.3.

Abb. 6.3: Aussicht einer Baumstruktur mit vielen Ebenen

Im *Abb. 6.4* ist es dargestellt, wie einzelne Strukturelemente am Instrument angezeigt werden. Die Aussicht ist für alle drei Speichermenüs gleich.

Abb. 6.4: Angabenstrukturelemente

6.3 Speichern der Prüfergebnisse

Nachdem die Einzelprüfung oder Automatiksequenz durchgeführt werden und die Ergebnisse und Parameter speicherbereit sind (im Angabenfeld wird die Ikone angezeigt), drücken Sie die **MEM**-Taste, um die Ergebnisse zu speichern.

Informationen über die Bestimmungen der angezeigten Felder erhalten Sie im *Abschnitt 6.2.*

🕆 SAV	E TEST 🛛 🕯
METREL d.d. 3/3	ODUCT. 2/6 ⊕ 1/3
FREE : 99.7%	SELECTED : 4/10
001 INSULATION	03.Mar.2006 07:37
002 CONTINUITY	02.Mar.2006 14:19
003 Z-LINE	03.Mar.2006 07:38
004 RCD	🗸 03.Mar.2006 07:38
005	•
M Rename	(2 Change view)

Abb. 6.5:Menü ,Prüfung speichern'

Tasten im Menü 'Prüfung speichern – Strukturfeld der Installationsangaben:

$\leftarrow / \rightarrow / \downarrow / \uparrow$	Kurzer Druck – eine Stelle in der Struktur des Installationsangabenfelds wählen. In einigen Beispielen für paar Sekunden gedrückt– eine neue Stelle in die Struktur zufügen, siehe 6.6.1.	
МЕМ	Prüfergebnisse an die letzte Position der ausgewählten Stelle speichern und zum Menü ,Messungen' zurückgehen.	
TAB	Schaltet zwischen Ergebnissen und Strukturangabenfeld, siehe 6.3.1.	
ESC	Das Menü 'Prüfung speichern' verlassen.	
F1	Den Namen der ausgewählten Stelle aufbereiten (siehe 4.3.4).	
F2	Zur Installationsstrukturbaumansicht gehen, um die entsprechende Stelle auszuwählen.	

Hinweise:

 Drücken Sie schnell zweimal die MEM-Taste, um die Ergebnisse an die vorausgewählte Stelle zu speichern.

6.3.1 Besonderheiten bei Speicherung von Ergebnissen

Bei Speicherung neuer Ergebnisse ist es möglich, die bestehenden Ergebnisse zu überschreiben.

😫 SAV	E TEST 🔋
METREL d.d. PR(1/1)	DDUCT. 2/5
FREE : 99.7%	SELECTED : 4/10
001 INSULATION	07.Sep.2005 10:18
002 CONTINUITY	07.Sep.2005 10:18
003 Z-LINE	07.Sep.2005 10:27
004 RCD	✓ 07.Sep.2005 10:28
005	· · · · ·
	J
·	

TEST
UCT. 2/5 H SOCKET
SELECTED : 4/10
07.Sep.2005 10:18
07.Sep.2005 10:18
07.Sep.2005 10:27
vious TEST? 5 10:28
NO

Ein neues Ergebnis anbringen

is anbringen Überschreiben muss bestätigt werden Abb. 6.6: Speicherung im Ergebnisfeld Tasten im Menü ,Prüfung speichern' - Ergebnisfeld:

\downarrow / \uparrow	Gespeichertes Prüfergebnis wählen.
TEST	Das Prüfergebnis in ausgewählte Zeile speichern (zum Überschreiben eines bestehenden Ergebnisses ist eine Bestätigung erforderlich).
ESC	Zurück zum Menü Prüfung speichern – Strukturfeld der Installationsangaben.

Tasten mit geöffnetem Dialog-Fenster:

\leftarrow / \rightarrow	YES / NO wählen.
TEST	Ausgewählte Option
	bestätigen.
ESC	Ohne Änderungen
ESC	widerrufen.

Informationen über die Speicherung an eine neue nicht bestehende Stelle erhalten Sie im Abschnitt 6.6.1.

6.4 Abrufen von Prüfergebnissen und Parametern

Drücken Sie die **MEM**-Taste im Einzel- oder Automatiksequenzmenü, wenn es kein Ergebnis zur Speicherung gibt, oder wählen Sie **Sonstiges** -Menü.

Informationen über die Bestimmungen des angezeigten Felder erhalten Sie *in Abb. 6.1*.

Abb. 6.7: Hauptabrufmenü

Tasten im Hauptabrufmenü:

$\leftarrow / \rightarrow / \lor / \wedge$	<i>Kurzer Druck</i> - eine Stelle in der Struktur des Installationsangabenfelds wählen. <i>In einigen Beispielen für paar Sekunden gedrückt</i> – eine neue Stelle in die Struktur zufügen, siehe <i>6.6.1</i> .
TAB	Schaltet zwischen Ergebnisfeld und Strukturangabenfeld, siehe 6.5.1.
ESC	Das Hauptabrufmenü verlassen.
F1	Den Namen der ausgewählten Stelle aufbereiten (für Aufbereiten siehe 4.3.4).
F2	Zur Installationsstrukturbaumansicht gehen, um die entsprechende Stelle auszuwählen.

6.4.1 Ergebnis abrufen

Ergebnisfeld muss ausgewählt werden.

METREL d.d.	5 23
FREE : 99.7%	SELECTED : 4/10
001 Z-LINE	07.Sep.2005 10:34
002 RCD	✓ 07.Sep.2005 10:35
003 INSULATION	13.Sep.2005 14:25
004#1 IZOLACIJA	13.Sep.2005 14:28

Abb. 6.8: Menü 'Angaben abrufen'

Tasten im Ergebnisfeld:

ψ / \uparrow	Gespeicherte Angaben wählen.
TEST	Den ausgewählten gespeicherten Gegenstand aufmachen.
TAB, ESC	Zurück zum Hauptabrufmenü.

 2-LINE
 13:29

 Loc:463A
 R:0.50Ω

 xt0.03Ω

 FUSE type:

 B

 FUSE t;

 GA

 FUSE t;

 String

Abb. 6.9: Beispiel einer gespeicherten Einzelprüfung

AUTO SEQUEN	CE	00:24 🛢
#1*	TEST:	L-N
IZOLACIJA	Uiso:	50 V
INSULATION	Limit:	OFF
	\succ	
		88588
		141 - 141

Abb.6.10: Gespeichertes Beispiel von Automatiksequenz

Taste:

ESC	Zurück zum Hauptabrufmenü.
-----	----------------------------

Tasten:

↓/↑	Gespeicherte Angaben wählen.	
TEST	TEST Das Ergebnis der Funktion	
	aufmachen.	
ESC	Zurück zum Hauptabrufmenü.	

Taste im aufgemachtem Ergebnis der Funktion:

ESC	Zurück zur beobachteten
	Automatiksequenz.

6.5 Gespeicherte Angaben löschen

Wählen Sie die Option im **Sonstiges**- Menü (siehe *4.4.3*).

In wählen Sie die Option, um den gesamten Ergebnisfeldspeicher zu löschen.

Abb. 6.11: Speicher löschen

Tasten:

\leftarrow / \rightarrow	ABBRECHEN / LÖSCHEN wählen.
TEST	Ausgewählte Option bestätigen.
ESC	Das Dialog-Fenster ohne Änderungen widerrufen.

In wählen Sie die Option, um bestimmte Ergebnisse zu löschen oder um Installationsstruktur zu modifizieren.

🐵 CLEA	R TESTS
METREL d.d. 3/3	ODUCT. 2/6 ⊕ 1/3
FREE : 99.7%	SELECTED : 4/12
001 INSULATION	03.Mar.2006 07:37
002 CONTINUITY	02.Mar.2006 14:19
003 Z-LINE	03.Mar.2006 07:38
004 RCD	✔ 03.Mar.2006 07:38
[1] Rename	2 Change view

Abb. 6.12: Prüfmenü löschen

Tasten:

\downarrow / \uparrow	Stelle wählen
TEST	Das Dialog-Fenster zum Löschen aufmachen.
TAB	Schaltet zwischen Ergebnisfeld und Strukturangabenfeld, siehe 6.5.1.
F2	Zur Installationsstrukturbaumansicht gehen, um die entsprechende Stelle auszuwählen.
F1	Aktuelle Stelle umbenennen.
ESC	Zurück zum letzten Menü des Instruments.

3PH SOCK

25.May.1970 00:18

07.Sep.2005 10:18

07.Sep.2005 10:27

SELECTED : 4/10

.2005 10:28

Ì

6.5.1 Besonderheiten von Löschen

Im Ergebnisfeld können die bestimmten gespeicherten Prüfergebnisse gelöscht werden.

d∰⊳

FREE : 99.7%

003 Z-LINE

004 RCD

001 INSULATION

002 CONTINUITY

Auswahl der zu löschenden Angaben

Das Dialog-Fenster vor der Löschung

CLEAR TEST

CLEAR TESTS

METREL d.d. 1/1 PRODUCT. 2/5

Abb. 6.13: Löschen einer bestimmten Prüfung

Tasten:

		- Eoneta
\downarrow / \uparrow	Gespeicherte Prüfung wählen.	1 611510
TEST	Das Dialog-Fenster zum Löschen der ausgewählten Prüfung aufmachen.	← / - TES
ESC	Zurück zum letzten Menü des Instruments.	ESC

Tasten im geöffneten Dialog-Fenster:

\leftarrow / \rightarrow	YES / NO wählen.
TEST	Ausgewählte Option
	bestätigen.
FSC	Ohne Änderungen
LJU	widerrufen.

Legende für Löschen von Installations-Angabenstrukturstellen:

CURRENT Location	Ergebnis an der aktuellen Stelle.	
SUB Locations	Ergebnisse an Unterstellen.	
TREE Structure	Aktuelle Stelle und dessen Unterstellen entfernen.	YES

Abb. 6.14: Löschen im Menü 'Installationsangabenstruktur'

Tasten:

$\leftarrow / \rightarrow / \checkmark / \uparrow$	Option wählen.
TEST	Option bestätigen.
ESC	Das Dialog-Fenster ohne Änderungen widerrufen.

6.6. Installationsangabenstruktur aufbereiten

Die im Instrument gespeicherte Installationsangabenstruktur kann auch durch das Instrument modifiziert werden. Möglichkeiten zum Aufbereiten sind:

- □ Eine neue Stelle in die Angabenstruktur zufügen- siehe 6.6.1,
- Den Namen der ausgewählten Stelle modifizieren,
- Stelle / Baumstruktur löschen, siehe 6.5.1.

Die Möglichkeiten sind im Speicherung-, Abrufen-, oder Löschungsmenü (teilweise) erreichbar.

6.6.1 Neue Stellen zufügen

Hinweis:

 Die Struktur kann zu 10 horizontalen Ebenen tief und mit maximal 2000 Speicherstellen ausgebreitet werden.

Tasten:

\vee / \uparrow	Die besehende Stelle wählen.	
F2	Zur Installationsstrukturbaumansicht gehen, um die	
	entsprechende Stelle auszuwählen.	
F1	Die aktuelle Stelle umbenennen.	
ESC	Zurück zum letzten Betriebsmenü des Instruments.	
↓ (für 2 Sekunden)	 Das Dialog-Fenster aufmachen, um eine neue Stelle auf dieselbe Ebene zuzufügen. Nur dann aktiv, wenn die ausgewählte Stelle die letzte auf der Ebene ist. Der Name der neuen Stelle: <i>Gleich wie vorherige Stelle +1</i>. 	
→ (für 2 Sekunden)	Das Dialog-Fenster aufmachen, um eine neue Stelle auf die nächste Unterebene zuzufügen. Nur dann aktiv, wenn es keine Unterebenen an der ausgewählten Stelle gibt Der Name der neuen Stelle: <i>Location</i>	

Tasten im geöffneten Dialog-Fenster:

\leftarrow / \rightarrow	YES / NO wählen.
TEST	Ausgewählte Option bestätigen.
ESC	Das Dialog-Fenster ohne Änderungen widerrufen.

Das unten dargestellte Beispiel zeigt, wie eine neue Stelle aufgemacht und ein Prüfergebnis an die Stelle gespeichert wird.

Durchgeführte Prüfung mit zur Speicherung vorbereitetem Ergebnis ist mit der Ikone 🕞 gekennzeichnet.		Abb. 6.15: Zur Speicherung vorbereitetes Prüfergebnis
Taste: MEM	Das Menü 'Prüfung speichern' annehmen.	Image: Save test Image: Save test Image: Save test Image: State test Image: State test Image: State test Image: State test Image: State test Image: State test Image: State test Image: State test Image: State test Image: State test Image: State test Image: State test Image: State test Image: State test I
Tasten: F2 TEST F1	Strukturansicht ändern. Die neue Stelle bestätigen. Das Umbenennen der neuen Stelle annehmen.	SAVE TEST METREL d.d. PRODUCT. SPH SOCKET 1/1 2/5 1/3 FREE : 99.8% SELECTED : 4/6 001 INSULATION 07.Sep.2005 10:18 002 CONTINUITY 07.Sep.2005 10:27 004 RCD Add new location? 005 Add new location? VES NO XES 21 ADD
Den Name Taste: F2	n der neuen Stelle annehmen. Namen bestätigen.	SAVE TEST METREL d.d. PRODUCT. PHI SOCKET 0123456789 0123456789 0800000000000000000000000000000000000

Taste:

MEM Ergebnis an die Stelle speichern.

Abb. 6.19: Stelle vorbereitet

Abb. 6.20: Gespeichertes Beispiel

6.7. Schnittstellen

Gespeicherte Ergebnisse können an den PC übertragen werden. Das Eurolink PC Programm stellt das Instrument automatisch fest und ermöglicht Übertragung der Angaben zwischen dem Instrument und PC.

Das Instrument stellt zwei Schnittstellen zur Verfügung: USB oder RS 232 (zum Auswahl sehen Sie *4.4.6*).

So werden die gespeicherten Angaben übertragen:

In Sonstiges-Untermenü wählen Sie die geeignete Schnittstele (USB / RS 232).

- **RS 232** ausgewählt: verbinden Sie das Instrument mit dem COM Ausgang am PC, indem Sie das PS/2 - RS232 Kabel verwenden;

- USB ausgewählt: verbinden Sie das Instrument mit dem USB Ausgang am PC, indem Sie das USB Kabel verwenden;

- Schalten Sie den PC und das Instrument ein.
- □ Starten Sie das *Eurolink* Programm.
- Der PC und das Instrument erkennen sich automatisch.
- Das Programm am PC ermöglicht die folgenden Möglichkeiten:
- Downloading Angaben;
- Bearbeitung von Angaben.
- Erstellung von Messberichten.

Exportieren von Angaben in Microsoft Excel und ähnliche PC Programme.

Das Programm *Eurolink* ist eine PC-Software, die für Windows 95/98, Windows NT, Windows 2000, Windows XP Windows Vista, Windows 7 geeignet ist. Zur Installierung und laufen des Programms lesen Sie README_EuroLink.txt-Datei auf der CD für Anleitungen.

Hinweis:

 Zur Installierung des USB Drivers befolgen Sie die Anleitungen auf der Installierung CD.

6.8. Der Betrieb mit Barcode-Scanner

Einige Instrumente (Hardware-Version HW 5 oder höher) unterstützen den Betrieb mit dem Barcode-Scanner. Mit dieser Anwendung können mit Barcode versehen Installations-Elemente identifiziert werden.

Wie liest man die Daten mit dem Barcodescanner?

- Barcode-Scanner mit dem PS / 2 Port verbinden
- Im Menü "Prüfung speichern " (siehe Kapitel 6.6, siehe Abbildung 6.18) kann der Namen des Ortes nun alternativ mit dem Barcode-Leser eingelesen werden.

Hinweis:

- Der ordnungsgemäße Betrieb ist nur mit Barcode-Scannern von Hersteller METREL / ZEBEX / HGL gewährleistet.
- Die unterstützten Barcode-Format finden Sie im Handbuch des Barcode-Lesers
- De Maximale Länge des Barcodes ist 10 Zeichen.
- in der PC SW EuroLINK PRO sieht man die Ausgelesene Werte von der Barcode als vierten- Betriebsmittelniveau.

7. Wartung

Unbefügten Personen ist es nicht gestattet, das EurotestXA-Instrument zu öffnen. Im Inneren des Instruments gibt es keine Komponenten, die vom Benutzer auszutauschen wären, außer drei Sicherungen und Batterien unter der Rückabdeckung.

7.1. Austausch der Sicherung

Unter der rückseitigen Abdeckung des EurotestXA Instruments befinden sich drei Sicherungen.

□ F1

M 0.315 A / 250 V, 20×5 mm

Diese Sicherung schützt die interne Schaltung der Niederohmfunktion, wenn Prüfsonden irrtümlich an Netzspannung angeschlossen werden.

- □ F2, F3
 - F 4 A / 500 V, 32×6.3 mm

Allgemeine Eingangsschutz-Sicherungen der Prüfklemmen L/L1 und N/L2.

Achtung:

- Vor Öffnen der Abdeckung des Batterie-/Sicherungsfachs das gesamte Messzubehör abklemmen und das Instrument ausschalten, da sonst im Inneren gefährliche Spannung anliegt.
- Durchgebrannte Sicherungen nur durch Originalsicherungen ersetzen, da das Instrument sonst beschädigt und/oder die Sicherheit des Bedieners beeinträchtigt werden kann

Die Position der Sicherungen ist aus Abbildung 3.4 "Rückwand" im Abschnitt 3.3 ersichtlich.

7.2. Reinigung

Für das Gehäuse ist keine spezielle Wartung erforderlich. Benutzen Sie zur Reinigung der Instrumentenoberfläche ein weiches Tuch, das leicht mit Seifenwasser oder Alkohol angefeuchtet ist. Danach das Instrument vor weiterer Benutzung vollständig abtrocknen lassen.

Achtung:

- Verwenden Sie keine Flüssigkeiten auf der Basis von Benzin oder Kohlenwasserstoffen.
- Schütten Sie keine Reinigungsflüssigkeit über das Instrument.

7.3. Periodische Kalibrierung

Es ist wichtig, das Instrument regelmäßig zu kalibrieren, damit die in diesem Handbuch angegebenen technischen Daten garantiert werden. Wir empfehlen eine jährliche Kalibrierung. Die Kalibrierung darf nur durch einen autorisierten Techniker durchgeführt werden. Bitte wenden Sie sich für weitere Informationen an Ihren Händler.

7.4. Service

Wenden Sie sich für Garantiereparaturen oder bei anderen Fragen jederzeit an Ihren Händler.

8. Technische Daten

8.1. Isolationswiderstand

8.1.1. Isolation LN, LPE, NPE

Isolationswiderstand (Nennspannungen 50 V_{DC}, 100 V_{DC} and 250 V_{DC}) Messbereich nach EN61557: 0.25 M Ω ÷ 19.99 M Ω .

Messbereich (M Ω)	Auflösung (MΩ)	Genauigkeit
0.00 ÷ 19.99	0.01	±(5 % des Ablesewerts + 5 Digits)
20.0 ÷ 199.9	0.1	Nur Indikator

Isolationswiderstand (Nennspannung 500 V_{DC} and 1000 V_{DC}) Messbereich nach EN61557 : 0.15 MO \div 1000 MO

Messbereich Hach Enorsyn (0.15 Misz + 1000 Misz).		
Messbereich (M Ω)	Auflösung (MΩ)	Genauigkeit
0.00 ÷ 19.99	0.01	±(5 % des Ablesewerts + 3 Digits)
20.0 ÷ 199.9	0.1	$\pm (10.\% dec. Ablecowarte)$
200 ÷ 299	1	\pm (10 % des Ablesewerts)
300 ÷ 1000	1	±(20 % des Ablesewerts)

8.1.2. Isolation ALLE, 'L-PE,N-PE', 'L-N,L-PE'

Isolationswiderstand (Nennspannung 50 V_{DC}, 100 V_{DC}, 250 V_{DC}, 500 V_{DC}, 1000 V_{DC}) Messbereich nach EN61557: 0.34 M Ω ÷ 30.0 M Ω .

Messbereich (M Ω)	Auflösung (MΩ)	Genauigkeit
0.00 ÷ 19.99	0.01	\pm (10 % des Ablesewerts +
20.0 ÷ 30.0	0.1	5 Digits)

Spannung

Messbereich (V)	Auflösung (V)	Genauigkeit
0 ÷ 1200	1	\pm (3 % des Ablesewerts + 3
		Digits)

Die angegebene Genauigkeit gilt bei Einsatz des Universalprüfkabels. Bei Einsatz der Taster-Prüfspitze oder Taster-Steckers gilt sie bis 100 MΩ.

Die angegebene Genauigkeit gilt bis 100 M Ω bei einer relativen Luftfeuchte von > 85%. Wenn das Instrument feucht wird, könnten die Ergebnisse beeinträchtigt werden. In einem solchen Fall ist es ratsam, das Instrument und das Zubehör mindestens 24 Stunden abtrocknen zu lassen.

Der Fehler bei Betriebsbedingungen kann am meisten den Fehler für Referenzbedingungen (oben angegeben für jede Funktion) ± 5 % des Ablesewerts betragen.

Anzahl möglicher Prüfungen > 1200, bei einem neuen Batteriensatz Automatische Entladung nach der Prüfung.

8.2. Durchgang

8.2.1. Widerstand R200mA L-PE, N-PE

1000000000000000000000000000000000000			
Messbereich R (Ω)	Auflösung (Ω)	Genauigkeit	
0.00 ÷ 19.99	0.01	±(3 % des Ablesewerts + 3 Digits)	
20.0 ÷ 199.9	0.1	$\pm (5\% dec Ablecowerts)$	
200 ÷ 1999	1	$\pm (5\%$ des Ableseweits)	
2000 ÷ 9999	1	Nur Indikator	

Messbereich nach EN61557: 0.16 Ω ÷ 1999 Ω .

Messbereich R+, R- (Ω)	Auflösung (Ω)	Genauigkeit
0.00 ÷ 19.9	0.1	\pm (5 % des Ablesewerts + 5
		Digits)
20.0 ÷ 199.9	0.1	(10 % dec Ablecowerte)
200 ÷ 1999	1	\pm (10 % des Ablesewerts)
2000 ÷ 9999	1	Nur Indikator

8.2.2. Widerstand R7mA L-PE, N-PE

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0.0 ÷ 19.9	0.1	\pm (5 % des Ablesewerts + 3
20 ÷ 1999	1	Digits)
2000 ÷ 9999	1	Nur Indikator

 $\label{eq:laufspannung} \hfill \hfi$

8.3. RCD-Prüfung

8.3.1. Allgemeine Angaben

Nenndifferenzstrom (A,AC).....10 mA, 30 mA, 100 mA, 300 mA, 500 mA, 1000 mA Genauigkeit des Nenndifferenzstroms $-0 / +0.1 \cdot I\Delta$; $I\Delta = I\Delta N$, $2 \times I\Delta N$, $5 \times I\Delta N$ $-0.1 \cdot I\Delta / +0$; $I\Delta = 0.5 \times I\Delta N$ AS / NZ ausgewählt: ± 5 % Prüfstrom-Form......sinusförmig (AC), gepulst (A), Gleichstrom (B) DC-Offset für gepulsten Prüfstrom.....6 mA (typisch) RCD-Typ......G (nicht verzögert), S (verzögert) Anfangspolarität des Prüfstroms...... 0 ° oder 180 ° RCD Messstrom (20ms r.m.s.Wert) - IEC 61009: $I\Delta N \times 1/2$ $I\Delta N \times 2$ $I\Delta N \times 5$ RCD IA $I\Delta N \times 1$

I∆N (mA)	AC	А	В	AC	А	В	AC	А	В	AC	А	В	AC	А	В
10	5	3.5	5	10	20	20	20	40	40	50	100	100	\checkmark	\checkmark	\checkmark
30	15	10.5	15	30	42	60	60	84	120	150	212	300	\checkmark	\checkmark	\checkmark
100	50	35	50	100	141	200	200	282	400	500	707	1000	\checkmark	✓	✓
300	150	105	150	300	424	600	600	848	n.a.	1500	n.a.	n.a.	\checkmark	✓	✓
500	250	175	250	500	707	1000	1000	1410	n.a.	2500	n.a.	n.a.	✓	✓	✓
1000	500	350	500	1000	1410	n.a.	2000	n.a.	n.a.	n.a.	n.a.	n.a.	\checkmark	\checkmark	n.a.

8.3.2. Berührungsspannung RCD-Uc

Messbereich nach EN61557 : 20.0 V \div 31.0V bei Berührungsspannung 25V Messbereich nach EN61557: 20.0 V \div 62.0V bei Berührungsspannung 50V

Messbereich (V)	Auflösung (V)	Genauigkeit
0.0 ÷ 19.9	0.1	(-0 % / +15 %) des Ablesewerts ± 10 Digits
20.0 ÷ 99.9		(-0 % / +15 %) des Ablesewerts

Die Genauigkeit gilt wenn Netzspannung während der Messung stabil ist.

Prüfstrom max. $0.5 \times I_{\Delta N}$ Grenzwert der Berührungsspannung 25 V, 50 V

8.3.3. Auslösezeit

Der gesamte Messbereich gemäß EN 61557 Vorschriften. Max. Messzeit nach gewählten Referenzen für RCD-Prüfung gestellt.

Messbereich (ms)	Auflösung (ms)	Genauigkeit
0.0 ÷ 40.0	0.1	±1 ms
0.0 ÷ max. time *	0.1	±3 ms

* Für max. Zeit siehe Normativen-Referenzen im *4.4.2* – diese Angabe gilt für max. Zeit von >40 ms.

Prüfstrom $\frac{1}{2} \times I_{\Delta N}$, $I_{\Delta N}$, $2 \times I_{\Delta N}$, $5 \times I_{\Delta N}$

 $5 \times I_{\Delta N}$ nicht verfügbar für $I_{\Delta N}$ =1000 mA (RCD-Typ AC) oder $I_{\Delta N} \ge 300$ mA (RCD-Typ A,B). $2 \times I_{\Delta N}$ nicht verfügbar für $I_{\Delta N}$ =1000 mA (RCD-Typ A) oder $I_{\Delta N} \ge 300$ mA (RCD Typ B). $1 \times I_{\Delta N}$ nicht verfügbar für $I_{\Delta N}$ =1000 mA (RCD Typ B). Die spezifizierte Genauigkeit gilt für den gesamten Messbereich.

8.3.4. Auslösestrom

Auslösestrom

Der gesamte Messbereich gemäß EN 61557 Vorschriften.

Messbereich I _∆	Auflösung I _∆	Genauigkeit
$0.2 \times I_{\Delta N} \div 1.1 \times I_{\Delta N}$ (AC-Typ)	$0.05 \times I_{\Delta N}$	$\pm 0.1 \times I_{\Delta N}$
0.2×I _{∆N} ÷ 1.5×I _{∆N} (A-Typ, I _{∆N} ≥30 mA)	$0.05 \times I_{\Delta N}$	$\pm 0.1 \times I_{\Delta N}$
$0.2 \times I_{\Delta N} \div 2.2 \times I_{\Delta N}$ (A-Typ, $I_{\Delta N}$ <30 mA)	$0.05 \times I_{\Delta N}$	$\pm 0.1 \times I_{\Delta N}$
0.2×I∆N ÷ 2.2×I∆N (B Typ)	0.05×I∆N	$\pm 0.1 \times I \Delta N$

Auslösezeit

Messbereich (ms)	Auflösung (ms)	Genauigkeit
0 ÷ 300	1	±3 ms

Berührungsspannung

Messbereich (V)	Auflösung (V)	Genauigkeit
0.0 ÷ 19.9	0.1	(-0 % / +15 %) des Ablesewerts ± 10 Digits
20.0 ÷ 99.9	0.1	(-0 % / +15 %) des Ablesewerts

Die Genauigkeit gilt wenn Netzspannung während der Messung stabil ist.

Die Messung ist nicht verfügbar für $I_{\Delta N}$ =1000 mA (RCD Typ B).

Die spezifizierte Genauigkeit gilt für den gesamten Messbereich.

8.4. Fehlerschleifenimpedanz und unbeeinflusster Fehlerstrom

8.4.1. Schutz: SICHERUNG ausgewählt

Fehlerschleifenimpedanz

Messbereich nach EN61557: 0.25 Ω ÷ 19999 Ω .

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit				
0.00 ÷ 9.99	0.01					
10.0 ÷ 99.9	0.1	\pm (5 % des Ablesewerts + 5				
100 ÷ 19999	1	Digits)				

Unbeeinflusster Fehlerstrom (berechneter Wert)

Messbereich (A)	Auflösung (A)	Genauigkeit
0.00 ÷ 9.99	0.01	
10.0 ÷ 99.9	0.1	Die Genauigkeit der
100 ÷ 999	1	Foblorschloifonimpodanz
1.00k ÷ 9.99k	10	beachten
10.0k ÷ 23.0k	100	bedomen

Die Genauigkeit gilt wenn Netzspannung während der Messung stabil ist.

Prüfstrom (at 230 V) 6.5 A (10 ms) Nennspannungsbereich 50 V ÷ 500 V (14 Hz ÷ 500 Hz)

8.4.2. Schutz: RCD ausgewählt

Fehlerschleifenimpedanz

Messbereich nach EN61557: 0.46 Ω ÷ 19999 Ω .

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit*
0.00 ÷ 9.99	0.01	\pm (5 % des Ablesewerts + 10
		Digits)
10.0 ÷ 99.9	0.1	±10 % des Ablesewerts
100 ÷ 19999	1	±10 % des Ablesewerts
10.0 ÷ 99.9 100 ÷ 19999	0.1	Digits ±10 % des Ab ±10 % des Ab

Die Genauigkeit gilt wenn Netzspannung während der Messung stabil ist.

Unbeeinflusster Fehlerstrom (berechneter Wert)

Messbereich (A)	Auflösung (A)	Genauigkeit
0.00 ÷ 9.99	0.01	
10.0 ÷ 99.9	0.1	Die Genauigkeit der
100 ÷ 999	1	
1.00k ÷ 9.99k	10	beachten
10.0k ÷ 23.0k	100	

8.5. Leitungsimpedanz und unbeeinflusster Kurzschluss-Strom und Spannungsfall

Leitungsimpedanz

Messbereich nach EN61557: 0.25 Ω ÷ 19.9 k Ω .

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit				
0.00 ÷ 9.99	0.01					
10.0 ÷ 99.9	0.1					
100 ÷ 999	1	\pm (5 % des Ablesewerts + 5				
1.00k ÷ 9.99k	10	Digits)				
10.0k ÷ 19.9k	100					

Unbeeinflusster Kurzschluss-Strom (berechneter Wert)

Messbereich (A)	Auflösung (A)	Genauigkeit	
0.00 ÷ 0.99	0.01	Die Genauigkeit der Messung der Leitungsimpedanz beachten	
1.0 ÷ 99.9	0.1		
100 ÷ 999	1		
1.00k ÷ 99.99k	10		
100k ÷ 199k	1000		

Prüfstrom (at 230 V) 6.5 A (10 ms) Nennspannungsbereich $30 \text{ V} \div 500 \text{ V}$ (14 Hz $\div 500 \text{ Hz}$) R, XL Werte sind indikativ.

Spannungsfall (errechneter Wert)

Messbereich (%)	Auflösung (%)	Genauigkeit
0,0 ÷ 99,9	0,1	Die Genauigkeit der Messung der Leitungsimpedanz beachten
8.6. Spannung, Frequenz und Phasenfolge

8.6.1. Phasenfolge

Nenn-Netzspannungsbereich 100 $V_{AC} \div 550 V_{AC}$ Nennfrequenzbereich 14 Hz $\div 500$ Hz Angezeigtes Ergebnis 1.2.3 or 3.2.1

8.6.2. Spannung

Messbereich (V)	Auflösung (V)	Genauigkeit
0 ÷ 550	1	\pm (2 % des Ablesewerts + 2
		Digits)

Messung TRMS Nennfrequenzbereich 0 Hz, 14 Hz ÷ 500 Hz

8.6.3. Frequenz

Messbereich (Hz)	Auflösung (Hz)	Genauigkeit
0.00 ÷ 999.99	0.01	\pm (0.2 % des Ablesewerts + 1 Digit)

Nennspannungsbereich 10 V ÷ 550 V

8.7. Online-Klemmenspannungswächter

Messbereich (V)	Auflösung (V)	Genauigkeit
10 ÷ 550	1	\pm (2 % des Ablesewerts + 2
		Digits)

Messung TRMS Nennfrequenzbereich 0 Hz, 14 Hz ÷ 500 Hz

8.8. Erdungswiderstand

Erdungswiderstand (Drei-Leiter-Methode)

Massharaich (0) Auflösung (0) Genauigkeit		
	Autosulig (S2)	Oenauigkeit
0.00 ÷ 19.99	0.01	$\pm(3\%$ des Ablesewerts + 3
20.0 ÷ 199.9	0.1	Digits)
200 ÷ 1999	1	\pm 5 % des Ablesewerts
2000 ÷ 9999	1	\pm 10 % des Ablesewerts

Messbereich nach EN61557: 0.67 Ω ÷ 9999 Ω

Zusätzlicher Messfehler falls

Rc max. oder Rp max. überstiegen sind

	\pm (5 % des Ablesewerts + 10 Digits)
Rc max.	100 R _E oder 50 k Ω (welch niedriger liegt)
Rp max	100 R _E oder 50 k Ω (welch niedriger liegt)
Automatikprüfung von Sondenwiderstand	l:Ja
Zusätzlicher Fehler	
bei 3 V- Störungsspannung (50 Hz)	\pm (5 % des Ablesewerts +10 Digits)
Störungsspannungsindikation	1 V (<50 Ω,)
Prüfspannung	max. 40 V _{AC}
Prüfspannungsfrequenz	125 Hz
Kurzschlussprüfstrom	< 20 mA

8.8.1 Erdungswiderstand, Messmethode mit einer Stromzange

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0.00 ÷ 19.99	0.01	$\pm (2.0)$ dec Ablacowarta + 2 Digita)
20.0 ÷ 199.9	0.1	\pm (3 % des Ableseweits + 3 Digits)
200 ÷ 1999	1	\pm 5 % des Ablesewerts
2000 ÷ 9999	1	\pm 10 % des Ablesewerts

Zusätzlicher Messfehler falls Rc max. oder Rp max. überstiegen sind
\pm (5 % des Ablesewerts + 10 Digits)
Rc max 100 R _E oder 50 kΩ (welch niedriger liegt)
Rp max
Automatikprüfung von Sondenwiderstand: Ja
Einfluss des Gesamtwiderstandes 2 % x R/Re
Zusätzlicher Fehler R und Re bei 3 V- Störungsspannung (50 Hz)
±(5 % des Ablesewerts +10 Digits)
R, \leq 2 A Störstrom (50 Hz) \pm (10 % des Ablesewerts +10 Digits)
Störungsspannungsindikation 1 V (<50 Ω,)
Prüfspannung max. 40 V _{AC}
Prüfspannungsfrequenz 125 Hz
Kurzschlussprüfstrom < 20 mA
Anzeige für zu niedrigen Stromzangenstrom Ja
Störungsstromsindikation Ja
Der zusätzliche Fehler der Stromzange muss berücksichtigt werden.

8.8.2. Erdungswiderstand, Messmethode mit zwei Stromzangen

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit*
0.00 ÷ 19.9	0.01	±(10 % des Ablesewerts + 10 Digits)
20.0 ÷ 30.0	0.1	±(20 % des Ablesewerts)
30.1 ÷ 49.9	0.1	\pm (30 % des Ablesewerts)
50.0 ÷ 39.9	0.1	Indikative

* Abstand zwischen Stromzangen >30 cm.

8.8.3 Spezifischer Erdwiderstand

Messbereich (Ω m)	Auflösung (Ωm)	Genauigkeit
0.0 ÷ 99.9	0.1	
100 ÷ 999	1	Don Hinwois zur Gonauigkeit
1.00k ÷ 9.99k	0.01k	beachten
10.0k ÷ 99.9k	0.1k	beachten.
>100k	1k	

Messbereich (Ωft)	Auflösung (Ωft)	Genauigkeit
0.0 ÷ 99.9	0.1	
100 ÷ 999	1	Don Hinwois zur Conquigkoit
1.00k ÷ 9.99k	0.01k	beachten
10.0k ÷ 99.9k	0.1k	beachten.
>100k	1k	

Messprinzip:

 $\rho = 2 \cdot \pi \cdot Abstand \cdot Re$, mit Re als gemessener Widerstand.

8.8.4. Hinweis zur Genauigkeit:

Die Genauigkeit wird mit dem gemessenem Widerstand Re definiert:

Messbereich (Ω)	Genauigkeit
1.00 ÷ 1999	\pm 5 % des Ablesewerts
2000÷ 19.99k	±10 % des Ablesewerts
>20k	±20 % des Ablesewerts

Zusätzliche Messfehlern: Siehe Erdungswiderstand, Drei-Leiter-Methode

8.9. TRMS-Strom

Messbereich	Auflösung	Genauigkeit
0.0 mA ÷ 99.9 mA	0.1 mA	
100 mA ÷ 999 mA	1 mA	\pm (3 % des Ablesewerts + 3
1.00 A÷ 19.99 A	0.01 A	Digits)

Eingangswiderstand	100 Ω
Max. Eingangsstrom	30 mA (=30 A @ Stromzange, Verhältnis 1000:1)
Messmethode	Stromzange, Verhältnis 1000:1
Nennfrequenz	40 Hz ÷ 500 Hz
Der zusätzliche Fehler der Zange mu	uss berücksichtigt werden.

8.10.Beleuchtung

Beleuchtung (LUX-Meter Typ B)

Messbereich	Auflösung (lux)	Genauigkeit
0.0 lux ÷ 19.99 lux	0.01	
20.0 lux ÷ 199.9 lux	0.1	\pm (5 % des Ablesewerts + 2
200 lux ÷ 1999 lux	1	Digits)
2.00 klux ÷ 19.99 klux	10	

Messmethode	Silizium-Photodiode mit V(λ)-Filter
Sondensensorkarakteristik	< 3.8 % nach CIE-Kurve
Kosinus-Fehler	< 2.5 % bis zum Einfallwinkel von +/- 85 Grad
Allgemeine Genauigkeit	nach DIN 5032 Class B Standard
Die angegebene Genauigkeit gilt für d	den gesamten Betriebsbereich.

Beleuchtung (LUX-Meter Typ C)

Messbereich	Auflösung (lux)	Genauigkeit
0.00 lux ÷ 19.99 lux	0.01	
20.0 lux ÷ 199.9 lux	0.1	\pm (10 % des Ablesewerts + 3
200 lux ÷ 1999 lux	1	Digits)
2.00 klux ÷ 19.99 klux	10	

Messmethode Silizium-Photodiode Kosinus-Fehler...... < 3.0 % bis zum Einfallwinkel von +/- 85 Grad Allgemeine Genauigkeit nach DIN 5032 Class C Standard Die angegebene Genauigkeit gilt für den gesamten Betriebsbereich.

8.11.2 Ω Leitungs-/Schleifenimpedanz

8.11.1. Leitungsimpedanz mit hoher Auflösung

Messbereich nach EN61557	beträgt 5.0 \div 1999 m Ω
--------------------------	------------------------------------

Messbereich (mΩ)	Auflösung (mΩ)	Genauigkeit
0.1 ÷ 199.9	0.1	+(5.% + 1.5%)
200 ÷ 1999	1	±(5 /0 + 1 III22)

Nennspannungsbereich	100 V ÷ 440 V
Nennfrequenz	50 Hz
Max. Prüfstrom (bei 400V)	

Berechnung des unbeeinflussten Kurzschluss-Stroms (Standard Spannungswert):

$I_{\rm K} = \frac{230 \text{ V}}{\text{Z}}$	$U_{L\text{-}N}\!=230$ V \pm 10 %
$I_{\kappa} = \frac{400 \text{ V}}{Z}$	U_{LL} = 400 V \pm 10 %

Berechnung des unbeeinflussten Kurzschluss-Stroms (nicht-Standard Spannungswert):

$-\frac{C_{MAX} \times U_{N(L-L)}}{2} \times \frac{2}{2}$	$-\frac{C_{MIN} \times U_{N(L-L)}}{2} \times \frac{2}{2}$
$I_{\text{KMAX3ph}} - \sqrt{3} Z_{\text{L-L}}$	KMIN3ph – $\sqrt{3}$ $Z_{(L-L)HOT}$
$I_{\text{KMAX2ph}} = \frac{C_{\text{MAX}} \times U_{\text{N(L-L)}}}{Z_{\text{L-L}}}$	$I_{\text{KMIN2ph}} = \frac{C_{\text{MIN}} \times U_{\text{N(L-L)}}}{Z_{\text{(L-L) HOT}}}$
$I_{\text{KMAX(L-N)}} = \frac{C_{\text{MAX}} \times U_{\text{N(L-N)}}}{Z_{\text{L-N}}}$	$I_{\text{KMIN(L-N)}} = \frac{C_{\text{MIN}} \times U_{\text{N(L-N)}}}{Z_{\text{(L-N)} \text{HOT}}}$
$Z_{L-L} = \sqrt{R_{L-L}^2 + X_{L-L}^2}$	$Z_{(L-L)HOT} = \sqrt{(1.5 \times R_{L-L})^2 + X_{L-L}^2}$
$Z_{\text{L-N}} = \sqrt{R_{\text{L-N}}^2 + X_{\text{L-N}}^2}$	$Z_{(L-N)HOT} = \sqrt{(1.5 \times R_{L-N})^2 + X_{L-N}^2}$

	$\begin{array}{l} U_{N(L-N)} = 230 \ V \pm 10 \ \% \\ U_{N(L-L)} = 400 \ V \pm 10 \ \% \end{array}$	230 V < U _N < 400 V
C_{MAX}	1.05	1.10
C _{MIN}	0.95	1.00

8.11.2. Fehlerschleifenimpedanz mit hoher Auflösung

Messbereich nach EN61557: 5.0 ÷ 1999 mΩ			
Messbereich (m Ω)	Auflösung (mΩ)	Genauigkeit	
0.0 ÷ 199.9	0.1	+(5.9) + 1 mO)	
200 ÷ 1999	1	±(3 % + 1 11122)	

Nennspannungsbereich...... 100 V ÷ 440 V Max. Prüfstrom (bei 230 V)..... 154 A (10 ms)

Berechnung des unbeeinflussten Kurzschluss-Stroms (Standard Spannungswert):

$$I_{\rm K} = \frac{230 \text{ V}}{Z}$$
 $U_{L-PE} = 230 \text{ V} \pm 10 \%$

Berechnung des unbeeinflussten Kurzschluss-Stroms (nicht-Standard Spannungswert):

$$\begin{split} I_{\text{KMAX}(\text{L-PE})} = & \frac{C_{\text{MAX}} \times U_{\text{N}(\text{L-PE})}}{Z_{\text{L-PE}}} \\ Z_{\text{L-PE}} = & \sqrt{R_{\text{L-PE}}^2 + X_{\text{L-PE}}^2} \\ \hline & I_{\text{KMIN}(\text{L-PE})} = \frac{C_{\text{MIN}} \times U_{\text{N}(\text{L-PE})}}{Z_{(\text{L-PE})\text{HOT}}} \\ Z_{\text{(L-PE)HOT}} = & \sqrt{\left(1.5 \times R_{\text{L-PE}}\right)^2 + X_{\text{L-PE}}^2} \\ \hline & \frac{U_{\text{N}(\text{L-PE})} = 230 \text{ V} \pm 10 \% 230 \text{ V} < U_{\text{N}} < 400 \text{ V}}{C_{\text{MAX}} 1.05 1.10} \\ \hline & 1.00 \end{split}$$

8.11.3. Berührungsspannung

Messbereich (V)	Auflösung (V)	Genauigkeit
0 ÷ 100	1	±(10 % + 3 Digits)

N / . : _ la 4000

8.12. Schutzpegel von Überspannungschutzeinrichtungen

-	-
DC S	Spannung

Messbereich (V)	Auflösung (V)	Genauigkeit
0 ÷ 1000	1	±(10 % + 3 Digits)

AC Spannung

Measuring range (V)	Auflösung (V)	Genauigkeit
0 ÷ 625	1	Die Genauigkeit für AC-Spannungs
		beachten

Messmetode	d.c. Spannungsrampe
Spannungsrampe	500 V/s
Ansprechstrom	1 mA

8.13. Allgemeine Angaben

Versorgungsspannung
Normaler Betrieb 13 h
Ladegerät-Versorgungseinheit 12 V \pm 10 %
Ladestrom 250 mA (intern reguliert)
Überspannungs-Kategorie 600 V CAT III, 300 V CAT IV
Taster-Stecker-Überspannungs-Kategorie 300 V CAT III
Schutzklasse doppelte Isolation
Verschmutzungsgrad
Schutzgrad IP 40
DisplayDisplay mit Hintergrundbeleuchtung
Abmessungen (B \times H \times T)
Referenzbedingungen
Referenztemperaturbereich 10 °C ÷ 30 °C
Referenzluftfeuchtebereich
Betriebsbedingungen Betriebstemperaturbereich
Lagerbedingungen Temperaturbereich

Leitungssucher Betriebsspannung bis zu 440 V

Datenübertragung RS 232..... 115200 Baud USB 256000 Baud

Der Fehler bei Betriebsbedingungen kann am meisten den Fehler für Referenzbedingungen (für jede Funktion in Betriebsanleitung angegeben) + 1 % des Ablesewerts + 1 Digit betragen.

A Anhang A - Sicherungstabelle

Sicherungstyp	Auslösezeit der Sicherung	Strombemessung der Sicherung	Unbeeinflusster Kurzschluss- Strom (A) unterer Wert
NV	35 ms	2 A	32.5
NV	35 ms	4 A	65.6
NV	35 ms	6 A	102.8
NV	35 ms	10 A	165.8
NV	35 ms	16 A	206.9
NV	35 ms	20 A	276.8
NV	35 ms	25 A	361.3
NV	35 ms	35 A	618.1
NV	35 ms	50 A	919.2
NV	35 ms	63 A	1217.2
NV	35 ms	80 A	1567.2
NV	35 ms	100 A	2075.3
NV	35 ms	125 A	2826.3
NV	35 ms	160 A	3538.2
NV	35 ms	200 A	4555.5
NV	35 ms	250 A	6032.4
NV	35 ms	315 A	7766.8
NV	35 ms	400 A	10577.7
NV	35 ms	500 A	13619
NV	35 ms	630 A	19619.3
NV	35 ms	710 A	19712.3
NV	35 ms	800 A	25260.3
NV	35 ms	1000 A	34402.1
NV	35 ms	1250 A	45555.1
NV	0.1 s	2 A	22.3
NV	0.1 s	4 A	46.4
NV	0.1 s	6 A	70
NV	0.1 s	10 A	115.3
NV	0.1 s	16 A	150.8
NV	0.1 s	20 A	204.2
NV	0.1 s	25 A	257.5
NV	0.1 s	35 A	453.2
NV	0.1 s	50 A	640
NV	0.1 s	63 A	821.7
NV	0.1 s	80 A	1133.1
NV	0.1 s	100 A	1429
NV	0.1 s	125 A	2006
NV	0.1 s	160 A	2485.1
NV	0.1 s	200 A	3488.5
NV	0.1 s	250 A	4399.6
NV	0.1 s	315 A	6066.6
NV	0.1 s	400 A	7929.1
NV	0.1 s	500 A	10933.5

Hinweis: Die im Instrument vorhandenen Sicherungsdaten.

Sicherungstyp	Auslösezeit der Sicherung	Strombemessung der Sicherung	Unbeeinflusster Kurzschluss- Strom (A) unterer Wert
NV	0.1 s	630 A	14037.4
NV	0.1 s	710 A	17766.9
NV	0.1 s	800 A	20059.8
NV	0.1 s	1000 A	23555.5
NV	0.1 s	1250 A	36152.6
NV	0.2 s	2 A	18.7
NV	0.2 s	4 A	38.8
NV	0.2 s	6 A	56.5
NV	0.2 s	10 A	96.5
NV	0.2 s	16 A	126.1
NV	0.2 s	20 A	170.8
NV	0.2 s	25 A	215.4
NV	0.2 s	35 A	374
NV	0.2 s	50 A	545
NV	0.2 s	63 A	663.3
NV	0.2 s	80 A	964.9
NV	0.2 s	100 A	1195.4
NV	0.2 s	125 A	1708.3
NV	0.2 s	160 A	2042.1
NV	0.2 s	200 A	2970.8
NV	0.2 s	250 A	3615.3
NV	0.2 s	315 A	4985.1
NV	0.2 s	400 A	6632.9
NV	0.2 s	500 A	8825.4
NV	0.2 s	630 A	11534.9
NV	0.2 s	710 A	14341.3
NV	0.2 s	800 A	16192.1
NV	0.2 s	1000 A	19356.3
NV	0.2 s	1250 A	29182.1
NV	0.4 s	2 A	15.9
NV	0.4 s	4 A	31.9
NV	0.4 s	6 A	46.4
NV	0.4 s	10 A	80.7
NV	0.4 s	16 A	107.4
NV	0.4 s	20 A	145.5
NV	0.4 s	25 A	180.2
NV	0.4 s	35 A	308.7
NV	0.4 s	50 A	464.2
NV	0.4 s	63 A	545
NV	0.4 s	80 A	836.5
NV	0.4 s	100 A	1018
NV	0.4 s	125 A	1454.8
NV	0.4 s	160 A	1678.1
NV	0.4 s	200 A	2529.9
NV	0.4 s	250 A	2918.2
NV	0.4 s	315 A	4096.4
NV	0.4 s	400 A	5450.5
NV	0.4 s	500 A	7515.7

Sicherungstyp	Auslösezeit der Sicherung	Strombemessung der Sicherung	Unbeeinflusster Kurzschluss- Strom (A) unterer Wert
NV	0.4 s	630 A	9310.9
NV	0.4 s	710 A	11996.9
NV	0.4 s	800 A	13545.1
NV	0.4 s	1000 A	16192.1
NV	0.4 s	1250 A	24411.6
NV	5 s	2 A	9.1
NV	5 s	4 A	18.7
NV	5 s	6 A	26.7
NV	5 s	10 A	46.4
NV	5 s	16 A	66.3
NV	5 s	20 A	86.7
NV	5 s	25 A	109.3
NV	5 s	35 A	169.5
NV	5 s	50 A	266.9
NV	5 s	63 A	319.1
NV	5 s	80 A	447.9
NV	5 s	100 A	585.4
NV	5 s	125 A	765.1
NV	5 s	160 A	947.9
NV	5 s	200 A	1354.5
NV	5 s	250 A	1590.6
NV	5 s	315 A	2272.9
NV	5 s	400 A	2766.1
NV	5 s	500 A	3952.7
NV	5 s	630 A	4985.1
NV	5 s	710 A	6423.2
NV	5 s	800 A	7252.1
NV	5 s	1000 A	9146.2
NV	5 s	1250 A	13070.1
gG	35 ms	2 A	32.5
gG	35 ms	4 A	65.6
gG	35 ms	6 A	102.8
gG	35 ms	10 A	165.8
gG	35 ms	13 A	193.1
gG	35 ms	16 A	206.9
gG	35 ms	20 A	276.8
gG	35 ms	25 A	361.3
gG	35 ms	32 A	539.1
gG	35 ms	35 A	618.1
gG	35 ms	40 A	694.2
gG	35 ms	50 A	919.2
gG	35 ms	63 A	1217.2
gG	35 ms	80 A	1567.2
gG	35 ms	100 A	2075.3
gG	0.1 s	2 A	22.3
gG	0.1 s	4 A	46.4
gG	0.1 s	6 A	70
gG	0.1 s	10 A	115.3

Sicherungstyp	Auslösezeit der Sicherung	Strombemessung der Sicherung	Unbeeinflusster Kurzschluss- Strom (A) unterer Wert
αG	0.1 s	13 A	144.8
ge	0.1 s	16 A	150.8
ge	0.1 s	20 A	204.2
ge	0.1 s	25 A	257.5
ge	0.1 s	32 A	361.5
gc	0.1 s	35 A	453.2
ge	0.1 s	40 A	464.2
aG	0.1 s	50 A	640
aG	0.1 s	63 A	821.7
ge	0.1 s	80 A	1133.1
aG	0.1 s	100 A	1429
aG	0.2 s	2 A	18.7
ge	0.2 s	4 A	38.8
ge	0.2 s	6 A	56.5
ge	0.2 s	10 A	96.5
ge	0.2 s	13 A	117.9
ge	0.2 s	16 A	126.1
gc	0.2 s	20 A	170.8
gg	0.2 s	25 A	215.4
ge	0.2 s	32 A	307.9
ge	0.2 s	35 A	374
gg	0.2 s	40 A	381.4
gg	0.2 s	50 A	545
aG	0.2 s	63 A	663.3
aG	0.2 s	80 A	964.9
gG	0.2 s	100 A	1195.4
aG	0.4 s	2 A	15.9
gG	0.4 s	4 A	31.9
gG	0.4 s	6 A	46.4
gG	0.4 s	10 A	80.7
gG	0.4 s	13 A	100
aG	0.4 s	16 A	107.4
gG	0.4 s	20 A	145.5
gG	0.4 s	25 A	180.2
qG	0.4 s	32 A	271.7
gG	0.4 s	35 A	308.7
gG	0.4 s	40 A	319.1
gG	0.4 s	50 A	464.2
gG	0.4 s	63 A	545
gG	0.4 s	80 A	836.5
gG	0.4 s	100 A	1018
gG	5 s	2 A	9.1
gG	5 s	4 A	18.7
gG	5 s	6 A	26.7
gG	5 s	10 A	46.4
gG	5 s	13 A	56.2
gG	5 s	16 A	66.3
gG	5 s	20 A	86.7

Sicherungstyp	Auslösezeit der	Strombemessung	Unbeeinflusster Kurzschluss-
dG	Sicilerung		
gg gg	53	20 A 32 A	109.3
gg	55	35 A	169.1
gg gg	55	35 A 40 A	109.3
gg gg	55	40 A	266.9
gg gg	55	50 A	200.9
gg gg	55	00 A 80 A	447.9
go gG	53	100 A	585 /
B B	35 ms	6.4	30
B	35 ms	10 A	50
B	35 ms	10 / 13 A	65
B	35 ms	16 A	80
B	35 ms	20 A	100
B	35 ms	25 A	125
B	35 ms	32 A	160
B	35 ms	40 A	200
B	35 ms	50 A	250
В	35 ms	63 A	315
B	0.1 s	6 A	30
В	0.1 s	10 A	50
В	0.1 s	13 A	65
В	0.1 s	16 A	80
В	0.1 s	20 A	100
В	0.1 s	25 A	125
В	0.1 s	32 A	160
В	0.1 s	40 A	200
В	0.1 s	50 A	250
В	0.1 s	63 A	315
В	0.2 s	6 A	30
В	0.2 s	10 A	50
В	0.2 s	13 A	65
В	0.2 s	16 A	80
В	0.2 s	20 A	100
В	0.2 s	25 A	125
В	0.2 s	32 A	160
В	0.2 s	40 A	200
В	0.2 s	50 A	250
В	0.2 s	63 A	315
В	0.4 s	6 A	30
B	0.4 s	10 A	50
В	0.4 s	13 A	
В	0.4 s	16 A	80
B	0.4 s	20 A	100
B	0.4 s	25 A	125
В	0.4 s	32 A	160
В	0.4 s	40 A	200
В	0.4 s	50 A	250
ј В	0.4 s	63 A	315

Sicherungstyp	Auslösezeit der Sicherung	Strombemessung	Unbeeinflusster Kurzschluss- Strom (A) unterer Wert
B	5 c	6 A	30
B	53	10 A	50
B	5 9	13 Δ	65
B	5 5	16 A	80
B	5 5	20 A	100
B	5 5	25 A	125
B	5 5	20 A	160
B	5 5	40 A	200
B	5 5	50 A	250
B	5 5	63 A	315
C	35 ms	0.5 A	5
C	35 ms	1 A	10
C	35 ms	1.6 A	16
C	35 ms	2 A	20
С	35 ms	4 A	40
С	35 ms	6 A	60
С	35 ms	10 A	100
С	35 ms	13 A	130
С	35 ms	16 A	160
С	35 ms	20 A	200
С	35 ms	25 A	250
С	35 ms	32 A	320
С	35 ms	40 A	400
С	35 ms	50 A	500
С	35 ms	63 A	630
С	0.1 s	0.5 A	5
С	0.1 s	1 A	10
С	0.1 s	1.6 A	16
С	0.1 s	2 A	20
С	0.1 s	4 A	40
С	0.1 s	6 A	60
С	0.1 s	10 A	100
С	0.1 s	13 A	130
С	0.1 s	16 A	160
С	0.1 s	20 A	200
С	0.1 s	25 A	250
С	0.1 s	32 A	320
C	0.1 s	40 A	400
C	0.1 s	50 A	500
C	0.1 s	63 A	630
C	0.2 s	0.5 A	5
C	0.2 s	1 A	10
C	0.2 s	1.6 A	16
C	0.2 s	2 A	20
	0.2 s	4 A	40
	0.2 s	6 A	60
	0.2 s	10 A	100
L C	0.2 s	13 A	130

Sicherungstyp	Auslösezeit der Sicherung	Strombemessung der Sicherung	Unbeeinflusster Kurzschluss- Strom (A) unterer Wert
С	0.2 s	16 A	160
C	0.2 s	20 A	200
С	0.2 s	25 A	250
C	0.2 s	32 A	320
C	0.2 s	40 A	400
C	0.2 s	50 A	500
C	0.2 s	63 A	630
C	0.4 s	0.5 A	5
C	0.4 s	1 A	10
C	0.13	16A	16
C	0.13	2 A	20
C	0.4 s	4 A	40
C C	0.13	6 A	60
C	0.4 s	10 A	100
C	0.4 s	13 A	130
C	0.13	16 A	160
C	0.13	20 A	200
C C	0.4 s	25 A	250
C	0.13	32 A	320
C	0.13	40 A	400
C C	0.4 s	50 A	500
C C	0.13	63 A	630
C	5 5	0.5 A	27
C	5 5	1 A	5.4
C	5 5	16.4	8.6
C	5 s	2 A	10.8
C	5 5	4 A	21.6
C	5 s	6 A	32.4
C	5 5	10 A	54
C	5 5	13 A	70.2
C	5 s	16 A	86.4
C	5 s	20 A	108
C	5 s	25 A	135
C	5 5	32 A	172.8
C	5 s	40 A	216
C	5 s	50 A	270
C	5 s	63 A	340.2
K	35 ms	0.5 A	7.5
K	35 ms	1 A	15
K	35 ms	1.6 A	24
K	35 ms	2 A	30
K	35 ms	4 A	60
K	35 ms	6 A	90
K	35 ms	10 A	150
K	35 ms	13 A	195
K	35 ms	16 A	240
K	35 ms	20 A	300
К	35 ms	25 A	375

Sicherungstyp	Auslösezeit der Sicherung	Strombemessung der Sicherung	Unbeeinflusster Kurzschluss- Strom (A) unterer Wert
К	35 ms	32 A	480
К	0.1 s	0.5 A	7.5
К	0.1 s	1 A	15
К	0.1 s	1.6 A	24
К	0.1 s	2 A	30
К	0.1 s	4 A	60
К	0.1 s	6 A	90
K	0.1 s	10 A	150
K	0.1 s	13 A	195
К	0.1 s	16 A	240
K	0.1 s	20 A	300
К	0.1 s	25 A	375
К	0.1 s	32 A	480
К	0.2 s	0.5 A	7.5
К	0.2 s	1 A	15
К	0.2 s	1.6 A	24
K	0.2 s	2 A	30
К	0.2 s	4 A	60
К	0.2 s	6 A	90
К	0.2 s	10 A	150
К	0.2 s	13 A	195
К	0.2 s	16 A	240
K	0.2 s	20 A	300
К	0.2 s	25 A	375
K	0.2 s	32 A	480
K	0.4 s	0.5 A	7.5
K	0.4 s	1 A	15
K	0.4 s	1.6 A	24
К	0.4 s	2 A	30
K	0.4 s	4 A	60
K	0.4 s	6 A	90
K	0.4 s	10 A	150
К	0.4 s	13 A	195
K	0.4 s	16 A	240
K	0.4 s	20 A	300
K	0.4 s	25 A	375
K	0.4 s	32 A	480
D	35 ms	0.5 A	10
D	35 ms	1 A	20
D	35 ms	1.6 A	32
D	35 ms	2 A	40
D	35 ms	4 A	80
D	35 ms	6 A	120
D	35 ms	10 A	200
D	35 ms	13 A	260
D	35 ms	16 A	320
D	35 ms	20 A	400
D	35 ms	25 A	500

D	35 ms	32 A	640
D	0.1 s	0.5 A	10
D	0.1 s	1 A	20
D	0.1 s	1.6 A	32
D	0.1 s	2 A	40
D	0.1 s	4 A	80
D	0.1 s	6 A	120
D	0.1 s	10 A	200
D	0.1 s	13 A	260
D	0.1 s	16 A	320
D	0.1 s	20 A	400
D	0.1 s	25 A	500
D	0.1 s	32 A	640
D	0.2 s	0.5 A	10
D	0.2 s	1 A	20
D	0.2 s	1.6 A	32
D	0.2 s	2 A	40
D	0.2 s	4 A	80
D	0.2 s	6 A	120
D	0.2 s	10 A	200
D	0.2 s	13 A	260
D	0.2 s	16 A	320
D	0.2 s	20 A	400
D	0.2 s	25 A	500
D	0.2 s	32 A	640
D	0.4 s	0.5 A	10
D	0.4 s	1 A	20
D	0.4 s	1.6 A	32
D	0.4 s	2 A	40
D	0.4 s	4 A	80
D	0.4 s	6 A	120
D	0.4 s	10 A	200
D	0.4 s	13 A	260
D	0.4 s	16 A	320
D	0.4 s	20 A	400
D	0.4 s	25 A	500
D	0.4 s	32 A	640
D	55	0.5 A	2.7
D	55	1 A	5.4
D	55	1.6 A	8.6
D	55	Z A	10.8
	55	4 A	21.0
	55	б А 10 А	32.4
	55	10 A	54
	55	13 A	10.2
	55		86.4
	55	20 A	108
	55	20 A	133
	55	52 A	172.0

B Anhang B – Zubehör für bestimmte Messungen

Die folgende Tabelle listet standardmäßige und optionale Zubehörteile für bestimmte Messungen auf. Die als optional gekennzeichnete Zubehörteile können bei einigen Ausführungen auch als standardmäßig betrachtet werden. Bitte sehen Sie die Auflistung der standardmäßigen Zubehörteile oder wenden Sie sich für weitere Informationen an Ihren Händler.

Funktion	Geeignetes Zubehör (optional mit Bestellkode A)
Isolation	Universalprüfkabel
Durchgang	Universalprüfkabel
	Prüfleitung 4m (A 1012)
Durchgang 7mA	Universalprüfkabel
Leitungswiderstand /	Universalprüfkabel
Spannungsfall	Taster-Stecker
-	Steckerkabel
	 Taster-Prüfspitze (A 1176)
Fehlerschleifenwiderstand	Universalprüfkabel
	Taster-Stecker
	Steckerkabel
	Taster-Prüfspitze (A 1176)
RCD-Prüfung	Universalprüfkabel
	Taster-Stecker
	Steckerkabel
Phasensequenz	Universalprüfkabel
	Dreiphasenkabel (A 1110)
	Dreiphasenadapter (A 1111)
Spannung, Frequenz	Universalprüfkabel
	Taster-Stecker
	Steckerkabel
	 Taster-Prüfspitze (A 1176)
Erdungswiderstand 3-	Universalprüfkabel
Leiter	Messsonden
	Erdungs-Set 20m
	Erdungs-Set 50m
Spezifischer Erdwiderstand	ρ-Adapter (A1199)
Erdungswiderstand, mit	Universalprüfkabel
einer Stromzange	Stromzange 1000 A – (A 1018)
Erdungswiderstand, mit	Universalprüfkabel
zwei Stromzangen	Stromzange 1000 A – (A10108)
	Stromzange 1000 A – standard (A 1019)
	Stromzange 200 A – standard (Å 1074)
TRMS Strom	Stromzange 1000 A – (A1018, A 1019)
Sensor	Lux-Meter Typ C (A 1173)
	□ Lux-Meter Typ B (A 1172)
2Ω Leitungs-	Impedanzadapter (A1143)
/Schleifenimpedanzadapter	

Leitungssucher	Empfänger R10K (A 1191)
5	1000 A Stromzange (A 1019)
	200 A Stromzange (À 1074)
	Zangenadapter (A 1068)
	Selektivsonde (Å 1192)
Schutzpegel	Universalprüfkabel

C Anhang C – Leitungssucher-Empfänger R10K

Der tragbare hochempfindliche **Empfänger R10K** stellt die EM-Felder fest, die durch Ströme in Leitungen verursacht werden. Je nach der Stärke des Signals werden Summer- und LED Bargraph bewirkt. Der Betriebsmodusschalter soll immer auf IND (induktive) Modus eingestellt sein. Der CAP (kapazitive) Betriebsmodus ist geeignet für Bedienung in Kombination mit anderen Metrel-Messgeräten.

Der im Empfänger eingebaute Feldsdetektor liegt am Vorderende des Empfängers. Außendetektors können mittels eines Rückanschlusses verbunden werden. Während der Tätigkeit mit EurotestXA müssen die verfolgten Gegenstände unter Spannung stehen.

Detektoren	Funktion
Integrierter induktiver Sensor (IND)	Verfolgung von Leitungen unter Wände, Boden usw.
Stromzange	Verbindung durch Rückanschluss.
	Suchen von Sicherungen.
Selektivsonde	Verbindung durch Rückanschluss.
	Suchen von Sicherungen.

Abb. C.1: R10K-Empfänger

Dem Benutzer stehen drei Empfindlichkeitsstufen (niedrig, mittel und hoch) zur Verfügung. Zur feinen Regulierung der Empfindlichkeit kann der Potentiometer verwendet werden. Ein Summerton und ein aus 10 Ebenen bestehender LED-Bargraph Anzeiger weisen auf die Stärke des magnetischen Feldes, d.h. auf die Nähe des verfolgten Gegenstands, hin.

Hinweis:

 Die Stärke des Feldes kann während der Verfolgung variieren. Die Empfindlichkeit soll für jedes Mal auf den Bestwert reguliert werden.

C.1. Leitungssuche Anwendungsbeispiele

C.1.1. Stellung des Empfängers

Der Empfänger muss richtig gestellt werden (sehen Sie die unteren Abbildungen), um das beste Ergebnis zu erhalten! Die Stelle der Leitung kann auf diese Weise gleicherweise festgestellt werden.

Abb. C.3: EurotestXA als Signalquelle für Leitungssuche

C.1.2.Anwendung mit Stromzange

Immer wenn es möglich ist die verfolgende Leitung umzufassen, empfiehlt sich, die entsprechende Stromzange statt des induktiven Empfänger-Sensors zu verwenden. (siehe die untere Abbildung). Die Signal-Trennschärfe wird durch das Benutzen der Zange wesentlich besser. Behalten Sie immer den maximalen Abstand zwischen der Stromzange und R10K.

Abb. C.4: Verwendung der Stromzange statt des induktiven Sensors

C 1.3. Anwendung mit Selektivsonde

Um die Sicherung innerhalb einer Gruppe suchen zu können, sollte die Selektivsonde verwendet werden. Die Leitung bzw. das Gehäuse der Sicherung müssen mit Selektivsonde unter einem richtigen Winkel betätigt werden. Suchen Sie das beste Signal, indem Sie die Selektivsonde rotieren.

Behalten Sie den maximalen Abstand zwischen R10K und Selektivsonde.

Hinweis:

 Behalten Sie Ihre Finger immer hinter der Schutzbarierre von Selektivsonde, um den elektrischen Schlag oder den Zugang zur unter Spannung stehenden Teilen zu vermeiden.

C.2. Abstände

Verbindung	Abstand bis zu
Verbindung zwischen L und N Kabel/Leitung in der selben	40 cm
Steckdose	
Verbindung zwischen L Kabel/Leitung in einer Steckdose und	2 m
N Kabel/Leitung in der anderen Steckdose mit getrennter	
Verkabelung*	

* ACHTUNG! Vermeiden Sie die Verbindung von EurotestXA zwischen Phasenleitung und PE-Schutzleitung von verschiedenen Steckdosen, Gefahr eines elektrischen Schlags!

C.3 R10K Versorgung

Der R10K-Empfänger wird durch eine 9 V-Alkalbatterie (IEC 6LR61) versorgt.

C.4 Wartung

Entfernen Sie die Batterien aus R10K, Wenn das Gerät über einen längern Zeitraum nicht benutzt wird.

Anwenden Sie die Wartungsanweisungen aus dem Abschnitt 7 dieser Unterlage.

D Anhang D - IT-Versorgungssystem

Um die Messungen und dessen typischen Anwendungen im IT-Versorgungsnetzen gut genug zu kennen, wird dem Benutzer empfohlen, das Metrel-Benutzerhandbuch *Measurements on IT power supply systems* zu lesen.

D.1. Standard-Referenzen

EN 60364-4-41, EN 60364-6, EN 60364-7-710, BS 7671

D.2. Grundlage

IT-Versorgungssystem ist ein vom Boden isoliertes Netzversorgungssystem (PE) – es ist ein nicht geerdetes Versorgungssystem. Das System hat keine direkte Verbindung mit der Erde oder wird die Verbindung durch eine relative hohe Impedanz erstattet. Es wird hauptsächlich angewandt falls zusätzlicher Schutz gegen elektrische Schlagen erforderlich ist. Typische Verwendungsörte sind Operationssaalen.

Normalerweise besteht eine hohe Impedanz zu Boden und sie wird durch kapazitive (Blind)Widerstände / Kapazitäten der Versorgungsleitung zu Boden und Kapazitäten zwischen primären und sekundären Wicklungen des IT-Versorgungstransformators geformt. Ein geringerer Teil entsteht durch Y-Kondensatoren (EMC) im Netzteil der an die Installation angeschlossenen Geräte. Indem Sie den entsprechenden Transformator, Installationskabeln und optionale Hochimpedanz-Verbindung zu Erde wählen, haben Sie die Möglichkeit, den maximalen Verluststrom zu kontrollieren. Je nach Anwendungsbereich kann eine zusätzliche Impedanz zu Erde angewandt werden, wie im Abb. *D.1* dargestellt. Der Impedanzwert sollte bei 100 Ω anfangen.

Das IT-System bietet ein zusätzliches Grad von Sicherheit gegen elektrische Schläge. Auch im Falle eines Versagens irgendeiner Leitungsisolation zu PE wegen eines Gerätedefekts, falscher Anwendung oder falsches Vorgangs, ist dieses System immer noch sicher, jedoch zu TN / TT-Typ umgewandelt. Dennoch muss der Isolationsfehler sofort nach einem festgestellten Versagen behoben werden, da ein zusätzliches Versagen gefährlich ist.

Ergänzend zu anderen Schutzgeräten verfügt das IT-System normalerweise entweder über ein Isolationsüberwachungsgerät (IMD) oder ein anderes System, das warnt, wenn Isolationswiderstand oder Impedanz unter dem eingestellten Grenzwert liegen. Der Grenzwert hängt von der Umgebung ab. Der typische Wert für medizinische Installationen beträgt 55 k Ω .

In einigen Ländern reicht es nicht aus, nur den Isolationswiderstand des IT-Versorgungssytems zu Erde zu überwachen, es ist auch Überwachung von Systemkapazitäten erforderlich.

IEC 60364-4-41 (©IEC): In IT-Systeme sollen unter Spannung stehende Teile gegen Erde isoliert werden oder durch eine genügend hohe Impedanz zu Erde verbunden werden. Diese Verbindung kann entweder am Neutral- oder Zwischenpunkt des Systems liegen oder aber auch an einem künstlichen Neutralpunkt. Dieser kann eine direkte Verbindung zu Erde haben, wenn die erreichte Impedanz zu Erde bei der Systemfrequenz genügend hoch liegt. Wenn es keinen Neutral- oder Zwischenpunkt gibt, kann eine der Leitungen durch eine hohe Impedanz zu Erde verbunden werden.

D.3 Messungsgrundlage

Der Benutzer muss vor der Prüfung das IT-Versorgungssystem im Instrument wählen. Die Informationen über den Auswahl des IT-Versorgungssystems erhalten Sie im Abschnitt 4.4.2 Versorgungssystem, Isc Skalierungsfaktor, RCD Standard. Nachdem das IT System ausgewählt wird, kann das Instrument sofort benutzt werden. Das Instrument behält das ausgewählte IT-System auch wenn es ausgeschaltet ist.

Wenn an das Instrument die entsprechenden Spannungen für das ausgewählte IT-System angelegt werden, zeigt der Klemmenspannungswächter die IT-Systemikone

D.3.1. Eurotest XA Prüffunktionen und IT-Systeme

Die folgende Tabelle listet die Funktionen des Instruments zusammen mit Hinweisen über Kompatibilität für IT-System auf.

IT-System Funktionen	Hinweis
Spannung	
Spannung	Für IT-System modifizierte Symbole, siehe Abb. D.2.
Phasendrehung	Nur für Dreiphasensystem, automatische Feststellung.
RCD-Funktionen	Verfügbar wenn der "Erster Fehler" Zustand festgestellt
wird.	
RCD-Uc	
RCD - Auslösezeit t	
RCD - Auslösestrom	
RCD – Automatische	
Prüfung	
Schleifenfunktionen	Verfügbar wenn der "Erster Fehler" Zustand festgestellt
wird.	
Fehlerschleifenimpedanz	
Fehler-Strom	
Leitungsfunktionen	
Leitungsimpedanz	Impedanz Z _{Phase-Phase} .
Kurzschluss-Strom	I _{SC} für nominale U _{Phase-Phase} .
Durchgangfunktionen	Unabhängig von ausgewähltem Versorgungssystem.
Isolationswiderstand	Unabhängig von ausgewähltem Versorgungssystem.
Erdungswiderstand	Unabhängig von ausgewähltem Versorgungssystem.
PE Fühler	Aktiv, aber keine Sperrung der Prüfungen.

Spannungsmessung

Store Voltage		22:35 📋
U21: 228 V	f: 50.01Hz	.)
U1pe: 114 V		
U2pe: 115 v		J
		L1 PE L2 • • • · · · · · · · · · · · · · · · · · · ·
		ГТ
VOLTAGE	<u>FINUITY)(INSU</u>	

Abb. D.2: Spannungsmessung

Angezeigte Ergebnisse für **Einzelphasen-System**: U21......Spannung zwischen Phasenleitungen,

U1pe.......Spannung zwischen Phasenleitung 1 und Schutzleitung,

U2pe...... Spannung zwischen Phasenleitung 2 und Schutzleitung.

Leitungsimpedanz

Sehen Sie Abschnitt 5.5, es gilt die gleiche Messung; nur die Terminalspannungswächter-Indikation entspricht dem IT-System.

RCD-Prüfung

Die RCD.Prüfung wird gleich durchgeführt, wie im TN-/TT-System (Sehen Sie Abschnitt 5.3), mit der folgenden Ausnahme: U_C-Messung ist nicht von Bedeutung.

Anschlussplan für die RCD-Prüfung

Abb. D.3: RCD-Prüfung im IT- System

IMD-Prüfung

Zweck dieser Funktion ist, die Warngrenze der Isolationsüberwachungsgeräten (IMD) durch Anwendung eines einstellbaren Widerstands zwischen L1/PE- und L2/PE-Klemmen zu überprüfen.

Weitere Informationen über die Funktion der Tasten erhalten Sie im Abschnitt 4.2 Einzelprüfung.

⊕ IMD	CHECK		15:03 📋
R1:	kΩ	11:	mA
R2:	kΩ	12:	mA
Limit:	OFF		
	RENT)(SE	NSOR)	AD CHECK (ISFL)

Abb. D.4: IMD-Prüfung

Prüfparameter für IMD-Prüfung

Gronzo	Typ [AUS, I, R]			
Grenze	Minimaler Isolationswiderstand [20.0 k Ω ÷ 650.0 k Ω]			

Anschlussplan für die IMD- Prüfung

Abb. D.5: Anschluss mit dem Taster-Stecker und Universalprüfkabel

Tasten bei der IMD-Prüfung:

$\mathbf{\Psi} / \mathbf{\Psi}$	Position des Widerstands wechseln (zwischen L1/PE oder L2/PE).
\leftarrow / \rightarrow	Den Wert des ausgewählten Widerstand ändern.
TEST	Prüfung beginnen / beenden.

IMD-Prüfung

- Wählen Sie die IMD CHECK-Funktion.
- Ermöglichen und stellen Sie den Grenzwert ein (optional).
- Schließen Sie das Prüfkabel an das Instrument und an die zu prüfende Anlage an (siehe Abb. *D.5*).
- Drücken Sie die TEST-Taste zur Messung.
- □ Drücken Sie die $\leftarrow I \rightarrow$ Tasten, bis die IMD-Alarmgrenze für L1 auslöst.
- □ Ändern Sie die Position des Widerstands zu L2/PE (\uparrow / \downarrow).
- □ Drücken Sie die ← / → Tasten, bis die IMD-Alarmgrenze für L2 auslöst
- Drücken Sie die **TEST**-Taste, um die Messung zu beenden.
- **Speichern** Sie das Ergebnis (optional).

Abb. D.6: Beispiel eines Ergebnisses der IMD-Prüfung.

Angezeigte Ergebnisse:

- R1.....Grenzwert (bei dem der Alarm auslöst) des Isolationswiderstandes zwischen L1 und PE.
- I1Der Fehlerstrom im Falle des ersten Fehlers (beim Grenzwert des Isolationswiderstandes) zwischen L1 und PE.
- R2.....Grenzwert (bei dem der Alarm auslöst) des Isolationswiderstandes zwischen L2 und PE.
- I2Der Fehlerstrom im Falle des ersten Fehlers (beim Grenzwert des Isolationswiderstandes) zwischen L2 und PE.

Der berechnete Fehlerableitsstrom im Falle des ersten Fehlers (beim Grenzwert des

Isolationswiderstandes) wird berechnete mit: $I_{1(2)} = \frac{U_{L1-L2}}{R_{1(2)}}$. U_{L1-L2}. Der berechnete

Fehlerableitsstrom im Falle des ersten Fehlers ist der maximaler Strom, der fließt, wenn der Isolationswiderstand an den selben Wert des angewandten Prüfwiderstands zunimmt, und der erste Fehler zwischen den entgegengesetzten Phasenleitung und PE vorausgesetzt wird.

Hinweis:

 Um die gültigen Pr
üfergebnisse zu erhalten, empfiehlt sich, alle an die zu pr
üfende Installation angeschlossene Ger
äte abzuschalten. Angeschlossene Ger
äte beeinflussen die Pr
üfung des Isolationswiderstandsgrenzwertes.

D.3.10. Fehlerstrom im Falle des ersten Fehlers (ISFL)

Die ISFL Messung ermittelt den höchsten Strom, der aus einer beobachteten Phase in PE ableiten könnte. Der Stromkreis schließt sich im Falle des ersten Fehler durch den Isolationswiderstand und Kapazitäten zwischen anderen Phasen und PE.

Weitere Informationen über die Funktion der Tasten erhalten Sie im Abschnitt *4.2 Einzelprüfung*.

Abb. D.7: ISFL-Messung

Prüfparameter für die Messung des Fehlerableitsstroms im Falle des ersten Fehlers

Grenze	Grenztyp [AUS, oberer Grenzwert, unterer Grenzwert]
Obere	r Grenzwert ausgewählt
Grenzwert	Maximaler Fehlerableitsstrom [3.0 mA ÷ 20.0 mA]
Untere	r Grenzwert ausgewählt
Grenzwert	Minimaler Fehlerableitsstrom [10 mA, 30 mA, 100 mA, 300 mA, 500 mA, 1000 mA]*

Anschlussplan für die ISFL- Prüfung

Abb D.8: Messung des maximalen Fehlerstroms

Abb D.9: Messung des Fehlerstroms in IT Systemen mit RCD-Schutzeinrichtungen.

So wird der erste Fehlerableitsstrom gemessen

- □ Wählen Sie die ISFL-Funktion.
- □ Ermöglichen und stellen Sie den **Grenzwert** ein (optional).
- Drücken Sie die **TEST**-Taste um die Messung anzufangen.
- **Speichern** Sie das Ergebnis (optional).

Abb. D.10: Beispiele von Messergebnisse für die Fehlerableitsströme im Falle des ersten Fehlers

Angezeigte Ergebnisse: I_{SC1}.....Der Fehlerstrom im Falle des ersten Fehlers zwischen L1 und PE Leitungen I_{SC2}......Der Fehlerstrom im Falle des ersten Fehlers zwischen L2 und PE Leitungen

D.4 Technische Angaben

Es werden nur diejenigen technischen Einzelangaben aufgelistet, die sich von den Einzelangaben aus dem Abschnitt 8 dieses Dokuments unterscheiden.

Fehlerstrom im Falle des ersten Fehlers ISFL

Messbereich (mA)	Auflösung (mA)	Genauigkeit
0.0 ÷ 99.9	0.1	(E % dec Ablacowarte + 2 Digita)
100 ÷ 1999	1	$\pm (5\%$ des Ableseweits ± 5 Digits)

Messwiderstand.....ungefähr. 30 Ω

Kalibrierte Widerstände für IMD-Prüfung

Berechneter Isolationsableitsstrom

Messbereich (mA)	Auflösung (mA)	Genauigkeit
0.0÷ 19.9	0.1	±(5 % des Ablesewerts + 3 Digits)

E Anhang E - Netze mit verminderter Spannung

E.1 Standard-Referenz

BS7671

E.2 Grundlage

Sonderversorgungssysteme werden angewandt, wo einbezogene Schutz gegen elektrischen Schlagen erforderlich ist aber kein SELV gebraucht wird. Netze mit verminderter Spannung sind für solche Fälle anwendbar.

Es gibt zwei Optionen für 110 V-Nennspannung.

Abb. E.1: Netze mit verminderter Spannung

E.3 Messungsgrundlage

Der Benutzer muss vor der Prüfung das Reduced Low Voltage (RLV) -

Versorgungssystem im Instrument wählen. Die Informationen über den Auswahl des IT-Versorgungssystems erhalten Sie im Abschnitt 4.4.2 Versorgungssystem, Isc Faktor, RCD Standard. Nachdem das RLV System ausgewählt wird, kann das Instrument sofort benutzt werden. Das Instrument behält das ausgewählte RLV-System auch wenn es ausgeschaltet ist.

Wenn an das Instrument die entsprechenden Spannungen für das ausgewählte RLV-System angelegt werden, zeigt der Klemmenspannungswächter die RLV-Systemikone RV.

E.3.1. MI 3101- Prüffunktionen und RLV-Systeme

Die folgende Tabelle listet die Eurotest XA-Funktionen auf, die für Prüfung und Messung von Versorgungssystemen mit Kompatibilitätsangaben beziehend auf Netze mit verminderter Spannung geeignet sind.

Reduced low voltage	Hinweis
system functions	
Spannung	
Spannung	Für RLV-System modifizierte Symbole, siehe Abb. D.2.
Phasendrehung	Nur für Dreiphasensystem, automatische Feststellung.
RCD-Funktionen	
RCD – Berührungs-	Für beide Möglichkeiten, L1-PE und L2-PE.
Spannung Uc	
RCD – Auslösezeit t	
RCD - Auslösestrom	
RCD – Automatikprüfung	
Schleifenfunktionen	
Fehlerschleifenimpedanz	Beide Fehlerschleifen, Z_1 (L1-PE) und Z_2 (L2-PE).
Fehler-Strom	I _{SC1} und I _{SC2} für beide Fehlerschleifen.
Leitungsfunktionen	
Leitungsimpedanz	Impedanz Z Phase-Phse.
Kurzschluss-Strom	I _{SC} für U _{Phase-Phase} = 110 V.
Durchgangsfunktionen	Unabhängig von ausgewähltem Versorgungssystem.
Isolationswiderstand	Unabhängig von ausgewähltem Versorgungssystem.
Erdungswiderstand	Unabhängig von ausgewähltem Versorgungssystem.
PE Fühler	Ausgeschaltet.

Spannungsmessung

		22:58 📋
U21: 111v	f: 50.00 Hz	
U1pe: 56 V		
U2pe: 56v		
		RV
VOLTAGE CONT	INUITY)(INSU	

Abb. E.2: Spannungsmessungen

Angezeigte Ergebnisse für Einzelphasensystem:

U21.....Spannung zwischen Phasenleitungen

U1pe......Spannung zwischen Phasenleitung 1 und Schutzleitung U2pe......Spannung zwischen Phasenleitung 2 und Schutzleitung

RCD-Prüfungen

Prüfungen werden sowohl für Kombination L1-PE als auch für L2-PE automatisch durchgeführt. Jedes einzelne Prüfungsergebnis wird mit dem entsprechenden Hinweis angezeigt.

	Uc1: 0.2 Uc2: 0.2	2v 2v	•	
RI1: 18 Ω		F	RI2: 16 Ω	
TEST:	Uc	1		PE L
ldn:	10mA		🖁 51	5 . 55 J
type:	,∕_⊡			-109
Ulim:	50V 🗜		RV	

Abb. E.3: RCD-Uc- Prüfung

 Falls die Eingangspannung außer Bereich ist, wird das das am Klemmenspannungswächter angezeigt, zusammen mit dem Anzeiger für gesperrte Prüfuna 💌.

 Maximaler RCD Pr
üfstrom betr
ägt 1 A r.m.s. und kann nur dann erreicht werden, wenn die Fehlerschleifenimpedanz niedriger als 1 ist.

Leitungsimpedanzprüfung

Ausgemessene Impedanz stellt die Phase-Phase-Impedanz (Z_{L1-L2}) dar. Nennsystemsspannung für die Berechnung von IPSC wird zu 110 V eingestellt. Nennsystemsspannungsbereich für Leitungsimpedanzmessung beträgt von 90 V bis 121 V. Falls die Eingangspannung außer Bereich ist, wird das am Klemmenspannungswächter angezeigt, zusammen mit dem Anzeiger für gesperrte Prüfung X.

Fehlerschleifenimpedanz-Prüfungen

Definition der Nennsystemsspannung für die Berechnung von IPSC wird geändert zu:

- □ 55 V für ausgewähltes Einzelphasen System,
- G3 V f
 ür ausgew
 ähltes Dreiphasensystem.

Prüfungen können sowohl für Kombination L1-PE als auch für L2-PE durchgeführt werden. Jedes einzelne Prüfergebnis wird mit einem entsprechenden Hinweis angezeigt.

₫Z-L00	P	23:02 📋
	z1: 54.7 Ω	
	z2: 54.4 Ω	
lsc1: 2.0 A		Isc2: 2.0 A
Protection:	RCD	
Fuse Type:		109
A-1110111		
EXAMPLE	ATION (Z-LINE)	

Abb. E.4: Fehlerschleifenimpedanz

Nennspannungen sind:

 $(56 \text{ V} \leq \text{Uinp} \leq 70 \text{ V})$

(44 V ≤ Uinp < 61 V) Für Einzelphasen-55 V-System Für Dreiphasen-63 V-System

Falls die Eingangspannung außer Bereich ist, wird das am Klemmenspannungswächter angezeigt, zusammen mit dem Anzeiger für gesperrte Prüfung $|\mathbf{X}|$.

E.4 Technische Angaben

Nur diejenigen technischen Angaben werden aufgelistet, die sich von den Angaben im Abschnitt 8 der Unterlage unterscheiden.

E.4.1 RCD

Allgemein

NenndifferenzströmeA	. 10 mA, 30 mA, 100 mA, 300 mA, 500 mA, 1
Genauigkeit des Nenndifferenzstroms	0 / +0.1· I_{Δ} für $I_{\Delta} = I_{\Delta N}$, 2· $I_{\Delta N}$, 5· $I_{\Delta N}$
	-0.1· $I_{\Delta N}$ / +0 für I_{Δ} = 0.5· $I_{\Delta N}$
Max. Nenndifferenzstrom	. 1000 mA für I _{∆N}
·	. 500 mA für 2·I _{∆N}
	100 mA für 5·I _{∆N}
Max. Prüfstrom:	.1 A (für Z-LOOP < 1 Ω)
Prüfstromform	. sinusförmig (AC), gepulst (A), DC (B)
DC-Offset für gepulsten Prüfstrom	.6 mA (normal)
RCD-Typ	. G (nicht verzögert), S (verzögert)
Anfangspolarität des Prüfstroms	.0 º oder 180 º
Nenneingangsspannung	. 55 V / 63 V / 14 Hz ÷ 500 Hz
Prüfmöglichkeiten	.L1 - PE und L2 - PE

Berührungsspannung Uc

Messbereich nach EN61557 beträgt 20.0 V \div 31.0 V (Grenzberührungsspannung 25 V). Messbereich nach EN61557 beträgt 20.0 V \div 62.0 V (Grenzberührungsspannung 50 V).

Messbereich (V)	Auflösung (V)	Genauigkeit
0.0 ÷ 19.9	0.1	(-0 % / +15 %) des Ablesewerts ± 10 Digits
20.0 ÷ 99.9		(-0 % / +15 %) des Ablesewerts

Die Genauigkeit gilt wenn Netzspannung während der Messung stabil ist.

Prüfstrom < 0.5 $I_{\Delta N}$

Berührungsspannung wird berechnet für .. $I_{\Delta N}$ (Standardtyp) oder für $2I_{\Delta N}$ (selektiver Typ).

Auslösezeit

Der gesamte Messbereich gemäß EN 61557 Vorschriften.

Max. Messzeiten werden nach ausgewählten RCD-Prüfreferenzen eingestellt.

Messbereich (ms)	Auflösung (ms)	Genauigkeit
0.0 ÷ 40.0	0.1	±1 ms
0.0 ÷ max. Zeit *	0.1	±3 ms

* Für max. Zeit siehe Normativ-Referenzen im *4.4.2* – diese Angabe gilt für max. Zeit von >40 ms.

Prüfstrom $\frac{1}{2} \times I_{\Delta N}$, $I_{\Delta N}$, $2 \times I_{\Delta N}$, $5 \times I_{\Delta N}$

 $5 \times I_{\Delta N}$ nicht verfügbar für $I_{\Delta N} \ge 100$ mA (RCD Typ AC) oder $I_{\Delta N} \ge 100$ mA (RCD Typ A, B). $2 \times I_{\Delta N}$ nicht verfügbar für $I_{\Delta N} \ge 500$ mA (RCD Typ A) oder $I_{\Delta N} \ge 300$ mA (RCD Typ B). $1 \times I_{\Delta N}$ nicht verfügbar für $I_{\Delta N} = 1000$ mA (RCD-Typ B)

Auslösestrom

Auslösestrom

Der gesamte Messbereich gemäß EN 61557 Vorschriften.

Messbereich I_{Δ}	Auflösung I _∆	Genauigkeit
$0.2 \times I_{\Delta N} \div 1.1 \times I_{\Delta N}$ (AC-Typ)	$0.05 \times I_{\Delta N}$	$\pm 0.1 \times I_{\Delta N}$
0.2×I _{∆N} ÷ 1.5×I _{∆N} (A-Typ, I _{∆N} ≥30 mA)	$0.05 \times I_{\Delta N}$	$\pm 0.1 \times I_{\Delta N}$
$0.2 \times I_{\Delta N} \div 2.2 \times I_{\Delta N}$ (A-Typ, $I_{\Delta N}$ <30 mA)	0.05×I _{∆N}	$\pm 0.1 \times I_{\Delta N}$
0.2×I∆N ÷ 2.2×I∆N (B Typ)	0.05×I∆N	$\pm 0.1 \times I \Delta N$

Auslösezeit

Messbereich (ms)	Auflösung (ms)	Genauigkeit
0 ÷ 300	1	±3 ms

Berührungsspannung

Messbereich (V)	Auflösung (V)	Genauigkeit
0.0 ÷ 19.9	0.1	(-0 % / +15 %) des Ablesewerts ± 10 Digits
20.0 ÷ 99.9	0.1	(-0 % / +15 %) des Ablesewerts

*Die Genauigkeit gilt wenn Netzspannung während der Messung stabil ist.

 $I_{\Delta N}$ nicht verfügbar für $I_{\Delta N}$ =1000 mA (RCD-Typ A,B). U_{CI} Spannung wird für Auslösestrom I_{Δ} berechnet.

E.4.2 Fehlerschleifenimpedanz und unbeeinflusster Kurzschluss-Strom

Schutz: SICHERUNG ausgewählt

Fehlerschleifenimpedanz

Messbereich nachEN61557: 0.32 Ω ÷ 19999 Ω .

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit		
0.00 ÷ 9.99	0.01			
10.0 ÷ 99.9	0.1	$\pm(10\% \text{ des Ablesewerts} + 5)$		
100 ÷ 19999	1	Digits)		

Fehlerstrom (berechneter Wert)

Messbereich (A)	Auflösung (A)	Genauigkeit
0.00 ÷ 9.99	0.01	Die Genauigkeit der Messung der Fehlerschleifenimpedanz beachten
10.0 ÷ 99.9	0.1	
100 ÷ 999	1	
1.00k ÷ 9.99k	10	
10.0k ÷ 23.0k	100	

Die Genauigkeit gilt wenn Netzspannung während der Messung stabil ist.

 $\begin{array}{ll} \text{IPSC Berechnung:} & \qquad & \text{IPSC = UN \cdot kSC \/ ZL - PE} \\ & U_N = 55 \ \text{V}; \ (44 \ \text{V} \leq \text{Uinp} < 61 \ \text{V}) \ \text{für ausgewähltes 55 \V-Einzelphasen-System} \\ & U_N = 63 \ \text{V}; \ (56 \ \text{V} \leq \text{Uinp} < 70 \ \text{V}) \ \text{für ausgewähltes 63 \V-Dreiphasen-System} \\ & \text{Max. Belastung} \\ & \qquad & \text{Max. Belastung} \\ & \qquad & \text{Nenneingangsspannung} \\ & \qquad & \qquad & 55 \ \text{V} \/ \ 63 \ \text{V}, \ 14 \ \text{Hz} \div 500 \ \text{Hz} \\ & \text{Prüfmöglichkeiten} \\ & \qquad & \qquad & \quad & \ & \text{L1 - PE} \ \text{und} \ \text{L2 - PE} \\ \end{array}$

Schutz: RCD ausgewählt

Schleifenimpedanz Messbereich nach EN61557: 0.85 Ω ÷ 19999 Ω .

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit *
0.00 ÷ 9.99	0.01	±(10 % des Ablesewerts + 15 Digits)
10.0 ÷ 99.9	0.1	\pm 15 % des Ablesewerts
100 ÷ 19999	1	±20 % des Ablesewerts

* Die Genauigkeit kann bei starkem Rauschen der Netzspannung beeinträchtigt sein.

Fehlerstrom (berechneter Wert)

Messbereich (A)	Auflösung (A)	Genauigkeit		
0.00 ÷ 9.99	0.01	Die Genauigkeit der Messung der Fehlerschleifenimpedanz beachten		
10.0 ÷ 99.9	0.1			
100 ÷ 999	1			
1.00k ÷ 9.99k	10			
10.0k ÷ 23.0k	100			

 I_{PSC} Berechnung: IPSC = $U_N \cdot ksc / ZL$ -PE
Leitungsimpedanz und unbeeinflusster Kurzschluss-Strom E.4.3

ZPhase-Phse

-Phase-Phse									
Messbereich nach EN61557: 0.25 Ω ÷ 19.9 k Ω .									
Messbereich (Ω)	Genauigkeit								
0.00 ÷ 9.99	0.01								
10.0 ÷ 99.9	0.1	(E. 0) dec Ablecowerte							
100 ÷ 999	1	\pm (5 % des Ablesewerts \pm 5 Digits)							
1.00k ÷ 9.99k	10	+ 5 Digits)							
10.0k ÷ 19.9k	100								

Kurzschluss-Strom

Messbereich nach EN61557: $0.0.25 \text{ A} \div 440 \text{ A} \text{ (ksc} = 1)$

Messbereich (A)	Auflösung (A)	Genauigkeit
0.00 ÷ 0.99	0.01	
1.0 ÷ 99.9	0.1	Die Genauigkeit der
100 ÷ 999	1	
1.00k ÷ 99.99k	10	beachten
100k ÷ 199k	1000	bedomen

*Die Genauigkeit gilt wenn Netzspannung während der Messung stabil ist. ine

IPSC Berechnung:	IPS	C = U _N ⋅k	sc / ZLine-Li
		44011	(00)/ <115

$U_{\rm N} = 110 \ {\rm V};$	(90 V \leq Uinp $<$ 121 \	/)
------------------------------	-----------------------------	----

Max. Belastung 3.1 A / 10 ms Nenneingangsspannung...... 110 V, 14 Hz ÷ 500 Hz R, XL Werte sind indikativ.

F. Anhang F – Länderspezifische Hinweise

Dieser Anhang F enthält eine Sammlung von geringfügigen Änderungen, die mit länderspezifischen Anforderungen zusammenhängen. Einige der Änderungen bedeuten geänderte aufgeführte Funktionsdaten, die sich auf Hauptabschnitte beziehen, und andere sind zusätzliche Funktionen. Einige geringfügige Änderungen beziehen sich auch auf verschiedene Anforderungen desselben Markts, die durch verschiedene Anbieter abgedeckt werden.

Liste der länderbezogenen Änderungen

Die folgende Liste enthält die aktuelle Liste der angewandten Änderungen.

Land	Art der Änderung	Bemerkung
AT	Angehängt	Spezieller RCD-Typ G
CH	Angehängt	Unterstützung der RCD-s I∆N = 15 mA
CH	Angehängt	L/N- Leiter gem. NIN/NIV Norm

Änderungspunkte

F.1. Österreich- Unterstützung der RCD-Typ G

Geändert wird das Folgende bezüglich des Erwähnten in Abschnitt 5.3:

- Der im Abschnitt erwähnte Typ G wird zum unmarkierten Typ 🗌 umgewandelt.
- RCD-Typ G hinzugefügt.
- Zeit-Grenzwerte sind dieselben wie beim RCD des allgemeinen Typs.
- Berührungsspannung wird genauso berechnet wie beim RCD des allgemeinen Typs.

Änderungen des Abschnitts 5.3

Prüfparameter für RCD-Prüfung und -Messung

TEST	RCD-Unterfunktionsprüfung [RCDt, RCD I, AUTO, Uc].
lδn	Nenn fehlerstromempfindlichkeit des RCDs $I_{\Delta N}$ [10 mA, 30 mA, 100 mA,
	300 mA, 500 mA, 1000 mA].
Тур	RCD-Typ [], G, S, Wellenform des Prüfstroms plus Anfangspolarität
	[ĵ∿, ʷ^, ĵ∽, ĵ <u>~, ™, ®, ₽.</u> *, <u>₽.</u> *].
MUL	Multiplikationsfaktor für Prüfstrom [½, 1, 2, 5 Ιδn].
Ulim	Konventioneller Berührungsspannungsgrenzwert [25 V, 50 V].

Hinweis:

• Ulim kann nur in der Unterfunktion Uc gewählt werden.

Das Instrument ist zum Prüfen von allgemeinen (unverzögerten) , G (General) und selektiven, (zeitverzögerten) S RCDs vorgesehen, die geeignet sind für:

- □ Wechsel-Fehlerstrom (AC-Typ, markiert mit dem Symbol →),
- □ pulsierenden Fehlerstrom (A-Typ, markiert mit dem Symbol ~).
- DC-Fehlerstrom (B-Typ, markiert mit dem Symbol ----).

Zeitverzögerte RCDs zeigen ein verzögertes Ansprechverhalten. Sie enthalten einen Integrationsmechanismus für den Fehlerstrom zum Erzeugen verzögerten Auslösens. Jedoch beeinflusst die Berührungsspannungs-Vorprüfung auch den RCD, und er benötigt eine Zeitspanne, um sich in den Ruhezustand zu erholen. Es wird eine Zeitverzögerung von 30 s eingeschaltet, bevor die Auslöseprüfung durchgeführt wird, damit sich der RCD des Typs S nach Vorprüfungen erholt, und eine Zeitverzögerung von 5 s wird für denselben Zweck beim RCD des Typs G eingeschaltet.

Änderung des Abschnitts 5.3

RCD-Typ		Berührungsspannung Uc proportional zu	Nennwert $I_{\Delta N}$			
AC	, G	1,05×I _{∆N}	boliobia			
AC	S	$2 \times 1,05 \times I_{\Delta N}$	beliebig			
А	□, G	1,4×1,05×I _{∆N}	> 20 mA			
А	S	$2 \times 1,4 \times 1,05 \times I_{\Delta N}$	≥ 30 IIIA			
А	□, G	2×1,05×I _{∆N}	< 20 m A			
А	S	$2 \times 2 \times 1,05 \times I_{\Delta N}$	< 30 IIIA			
В		2×1,05×I _{∆N}	boliobia			
В	S	$2 \times 2 \times 1,05 \times I_{\Delta N}$	Dellebig			

Tabelle: Beziehung zwischen Uc und $I_{\Delta N}$

F.2. Schweiz- Unterstützung der RCDs $I\Delta N = 15 \text{ mA}$

F.2.1. Unterstützung der RCDs $I\Delta N = 15 \text{ mA}$

Geändert wird das Folgende bezüglich des Erwähnten in Abschnitt 5.3:

Prüfparameter für RCD-Prüfung und -Messung

TEST	RCD Unterfunktionsprüfung [RCDt, RCD I, AUTO, Uc].
$I_{\Delta N}$	Nenn fehlerstromempfindlichkeit des RCDs $I_{\Delta N}$ [10 mA, 15 mA , 30 mA, 100 mA,
	300 mA, 500 mA, 1000 mA].
Тур	RCD-Typ [, G, S, Wellenform des Prüfstroms plus Anfangspolarität [, ,
	'''∕, , , , , , , , , , , , , , , , , ,
MUL	Multiplikationsfaktor für Prüfstrom [½, 1, 2, 5 lδn].
Ulim	Konventioneller Berührungsspannungsgrenzwert [25 V, 50 V].

Geändert wird das Folgende bezüglich des Erwähnten in Abschnitt 9.3 RCD Prüfung:

Allgemeine Daten

	IΔN × 1/2			ΙΔN × 1		ΙΔΝ × 2			ΙΔN × 5			RCD IA			
I∆N (mA)	AC	А	B*	AC	А	B*	AC	А	В	AC	А	B*	AC	А	B*
10	5	3.5	5	10	20	20	20	40	40	50	100	100	✓	\checkmark	\checkmark
15	7.5	5.25	7.5	15	30	30	30	60	60	75	150	150	>	>	✓
30	15	10.5	15	30	42	60	60	84	120	150	212	300	>	✓	✓
100	50	35	50	100	141	200	200	282	400	500	707	1000	>	✓	✓
300	150	105	150	300	424	600	600	848	n.a.	1500	n.a.	n.a.	✓	\checkmark	✓
500	250	175	250	500	707	1000	1000	1410	n.a.	2500	n.a.	n.a.	✓	\checkmark	\checkmark
1000	500	350	500	1000	1410	n.a.	2000	n.a.	n.a.	n.a.	n.a.	n.a.	\checkmark	\checkmark	n.a.

n.a....nicht anwendbar Typ AC.....sinusförmiger Prüfstrom Typ A.....gepulster Strom Typ B.....glatter Gleichstrom

F.2.2. L/N- Leiter gem. NIN/NIV Norm

Beispiel:

N/PE/L Anzeige gem. NIN/NIV Standards